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Representation Learning

® Representation Learning in NLP
o Transformer Encoder + Self-supervised Training: BERT
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3D Molecular Representation Learning

® What’s 3D Molecular Representation Learning
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® 3D Molecular Information Transformer or GNN ® Coordinates Denosing
o Atom Coordinates ® Distance Prediction
o Distance between atoms ® Dihedral Angel
o Dihedral Angel Prediction



3D Molecular Representation Learning

® Uni-Mol
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Zhou, Gengmo, et al. "Uni-Mol: a universal 3D molecular representation learning framework." ICLR (2023).



3D Molecular Representation Learning

® Transformer-M
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3D Molecular Representation Learning

® What’s 3D Molecular Representation Learning
o EnCD Framework: Encoder-only model with Coordinate Denoising objective
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Analysis: Inconsistencies between Objectives

® Inconsistencies Between Pre-Training and Downstream Objectives

[> Denosing
Loss

® Inconsistencies:
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o Good Performance on Pre-training
Downstream Tasks
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Tasks




Analysis: Inconsistencies between Objectives

® Inconsistencies Between Pre-Training and Downstream Objectives
o Good Performance on Pre-training Tasks
o Poor Performance on Downstream Tasks
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(a) Reconstruction probing.

(b) Downstream task probing.
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Analysis: Inconsistencies between Objectives

® Inconsistencies Between Pre-Training and Downstream Objectives
o Good Performance on Pre-training Tasks
o Poor Performance on Downstream Tasks

® Differences between Molecules and Languages

I am very [MASK] E> | am very happy

Molecules Language
® Low-level Semantic ® High-level Semantic
® Unordered information ® Ordered information



Analysis: Twisted Optimization of Content and

Identifier
® Differences between Molecules and Languages

Mol-AE consistently outperforms various
molecular representation learning methods.
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Mol-AE consistently [MASK] various
molecular representation [MASK] methods.
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molecular representation learning methods.

Mask Tokens

Shuffle

molecular various representation [MASK]

outperforms learning < Mol-AE methods [MASK] consistently.



Analysis: Twisted Optimization of Content and

Identifier
® How much impact does noise have on PE

o Chemical bond length distribution: 1A Uniform Noise is a strong noise.
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Analysis: Twisted Optimization of Content and

Identifier
® Training Curve
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Analysis: Twisted Optimization of Content and

Identifier
® Training Curve
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Analysis: Twisted Optimization of Content and

Identifier
® But Uni-Mol-PE can’t consistently outperform Uni-Mol on downstream tasks
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(b) Downstream performance

Positional information does not help the encoder learn better representations.



Analysis: Twisted Optimization of Content and
Identifier

® Positional information does not help the encoder learn better representations.
® But it can help the model distinguish from different atoms.
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Analysis: Twisted Optimization of Content and

Identifier

® Positional information does not help the encoder learn better representations.

® But it can help the model distinguish from different atoms.
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Method

® Mol-AE: Auto-Encoder Based Molecular Representation Learning With 3D

Cloze Test Objective
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Experiments

® The results on 9 molecule classification datasets.

Table 1. The overall results on 9 molecule classification datasets. We report ROC-AUC score (higher is better) under scaffold splitting.
The best results are bold. The second-best results are underlined.

Datasets BACET BBBPft Tox211 SIDERT HIVYT MUVT PCBA1T ClinTox? ToxCastf | Meant
# Molecules 1531 2039 7831 1427 41127 93087 437929 1478 8575 -
D-MPNN 80.9 71.0 75.9 57.0 77.1 78.6 86.2 90.6 65.5 75.87
Attentive FP 78.4 64.3 76.1 60.6 75.7 76.6 80.1 84.7 63.7 73.36
N-Gramgp 77.9 69.7 74.3 66.8 VN 76.9 - 11> - -
PretrainGNN 84.5 72.6 78.1 62.7 79.9 81.3 86.0 72.6 65.7 75.93
GROVER 82.6 70.0 74.3 64.8 62.5 62.5 76.5 81.2 65.4 71.09
GraphMVP 81.2 72.4 75.9 63.9 77.0 717.7 - 79.1 63.1 -
MolCLR 82.4 72.2 75.0 58.9 78.1 79.6 - 91.2 69.2 -
MoleBLEND 83.7 73.0 77.8 64.9 79.0 77.2 - 87.6 66.1 -
Uni-Mol 83.2 71.5 78.9 37T 78.6 72.6 88.1 84.1 69.1 75.98

MoL-AE | 84.1 72.0 80.0 67.0 80.6 81.6 88.9 87.8 69.6 | 79.04




Experiments

® The results on 6 molecule regression datasets.

Datasets QM9 OQM8] QM7] ESOL| FreeSolv] Lipol
# Molecules | 133885 21789 6830 1129 642 4200
# Tasks 3 12 1 1 1 1

D-MPNN 0.0081  0.0190  103.5 1.050 2.082 0.683
Attentive FP | 0.0081  0.0179  72.0 0.877 2.073 0721
N-Gramrp 0.0104 0.0236  92.8 1.074 2.688 0.812
PretrainGNN | 0.0092  0.0200  113.2 1.100 2.764 0.739
GROVER 0.0099 0.0218  94.5 0.983 2:.176 0.817

GraphM VP - - - 1.029 - 0.681
MolCLR - 0.0178  66.8 1271 2.594 0.691
MoleBLEND - - - 0.831 1.910 0.638
Uni-Mol 0.0054 0.0160  58.9 0.844 1.879 0.610

MoL-AE | 0.0053 0.0161 53.8 0.830 1.448 0.607




Analytical Experiments

® Why Auto-Encoder

® Why 3D cloze test

@® Why PE is added to the decoder
@® Why dropping



Analytical Experiments
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Table 3. Decoder capacity. Using an overly shallow decoder can

2
harm the model’s performance' Table 9. Performance comparison of MOL-AE and MOL-AE-full on downstream tasks.

L9 | Tox211+ HIVY | QM7  FreeSolvl Method | Tox214 HIVY QM7) FreeSolv)
0 74.2 741 68.1 2.20 MoL-AE 80.0 80.6 53.8 145

1 i 77.5 58.6 1.92 MoL-AE-full 79.1 78.9 56.2 1.67
2, 78.7 78.5 59.9 1.78

3 77.9 78.2 58.6 1.83

4 78.1 78.3 56.8 1.74

5 78.9 79.4 55.3 192

8 79.5 78.1 57:1 1.79

11 78.8 77.1 55.4 1.71




Analytical Experiments

® Why PE is added to the decoder

@® Better convergence Table 4. Sequential order information in PE. Introducing PE

@® Sequential order may be harmful in encoder will potentially harm the capacity for 3D molecular

understanding.
. s Order | PEgne PEpec | Tox2I4+ HIVY | QM7)  FreeSolv)

g 0 SMILES v v 78.2 78.4 57.3 2.12

Sos SMILES v 78.9 79.4 55.3 1.72

. Random v v 77.9 76.9 63.2 2.03

§04 Random v 78.3 79.2 56.7 1.64

8 0:2 No PE 77.6 76.5 58.2 1.89

Table 10. Ablation study on adding PE to different layers.
Data ‘ Layer0 Layer5 Layer 10 Layer15 Layer16 Layer17 Layer18 Layer 19 Layer 20

Jox21 T 782 719 71.4 78.9 78.6 78.9 77.6 771 713
HIV 1 78.4 781 116 79.4 79.3 199 78.6 79.1 78.3
QM7 | 72 58.1 59.4 55.3 554 56.9 574 57.4 57.8
FreeSolve | 214 213 2.15 172 1.69 177 113 1.76 1.84




Analytical Experiments

Table 5. Disruption methods. Using dropping to disrupt coordi-
nates could achieve better performance.

() Why d roppi ng Method | Tox21 T HIVT | QM7]  FreeSolv]
@ Better performa nce MoL-AE-noise 0.5A 78.6 79.5 56.8 1.70
MoL-AE-noise 1A 79.5 79.9 56.6 1.68
MoL-AE-noise 3A 78.9 79.7 5T-2 171
MoL-AE-noise 5A 78.8 79.8 56.8 1.65
MoL-AE 80.0 80.6 53.8 1.45

For a more theoretical explanation, please refer to
Yu Meng, et al. "Representation Deficiency in Masked Language Modeling" ICLR (2024).
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