Path-based GNNs* can count cycles and are incomparable to k-WL

*if nodes know their neighbors

Questions? Send us a mail:

caterina.graziani2@unisi.it tamara.drucks@tuwien.ac.at

The Expressive Power of Path-Based Graph Neural Networks

Caterina Graziani*, Tamara Drucks*, Fabian Jogl, Monica Bianchini, Franco Scarselli, Thomas Gärtner

WHY SHOULD I CARE?

Standard message-passing graph neural networks (GNNs) are limited by the Weisfeiler-Leman (WL) graph isomorphism test.

We show that **path-based GNNs with distance encoding** form a **novel class of highly expressive GNNs**.

We introduce **d-PATH-WL**, where colors are refined as:

TIME COMPLEXITY. One iteration of **d-PATH-WL** takes $\mathcal{O}(nD^{\ell})$.

#of nodes / maximum degree

MONOTONICITY OF EXPRESSIVE POWER. The expressive power of **d-PATH-WL** is non-decreasing with the distance encoding depth d and path length ℓ .

WHAT DID YOU SHOW?

We focused on two variants of **d-PATH-WL:**

0-PATH-WL \longrightarrow no distance encoding

1-PATH-WL \rightarrow nodes know their neighbors

THEOREM. 0-PATH-WL is strictly more expressive than 1-WL for $\ell \ge 2$.

THEOREM. 0-PATH-WL can distinguish several graph families* with **only one iteration**.

*which 1-WL can't distinguish

THEOREM. 1-PATH-WL can count cycles.

THEOREM. 1-PATH-WL is **incomparable** to k-WL for every $k \ge 3$.

THEOREM. 1-PATH-WL is not less expressive than SubgraphGNN, Local 2-GNN, and Folklore k-GNN for every $k \ge 2$.

(HOW) DOES IT WORK IN PRACTICE?

We propose **PAIN** (PAth Isomorphism Network), a GNN with expressive power equivalent to **d-PATH-WL**:

$$\mathbf{h}_{v}^{(i)} = \operatorname{AGG}\left(\{\!\{\mathbf{z}_{p}^{(i-1)} \mid p \in d - \mathcal{P}_{v}^{\ell}\}\!\}\right)$$

$$\overbrace{\mathbf{z}_{p}^{(i-1)} = f((h_{v}^{(i-1)}, \dots, h_{v_{e}}^{(i-1)}))}$$

We evaluate the expressive power of **PAIN** on the synthetic datasets **EXP**, **SR** and **CSL**.

- Ablation study on CSL

		1 Layer			2 Layers	
ℓ	0-PAIN	1-PAIN	2-PAIN	0-PAIN	1-PAIN	2-PAIN
2	12 ± 4	20 ± 0	20 ± 0	12 ± 4	64 ± 8	70 ± 9
3	18 ± 4	40 ± 0	50 ± 0	20 ± 0	47 ± 6	64 ± 4
4	29 ± 5	54 ± 5	90 ± 0	32 ± 3	64 ± 5	90 ± 0
5	50 ± 0	59 ± 1	100 ± 0	46 ± 5	67 ± 2	100 ± 0
6	50 ± 0	90 ± 0	100 ± 0	46 ± 5	90 ± 0	100 ± 0

Additionally, we perform experiments on the molecule datasets **ZINC** and **OGBG-MOLHIV**, outperforming standard message-passing GNNs.

WHAT'S NEXT?

Hopefully some exciting things, such as identifying graph classes where we can **upper bound** the path length or number of paths, providing **tighter bounds** for expressivity, and investigating **long-range interactions**.