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Introduction

Visual transformers have demonstrated remarkable performance
compared to state-of-the-art CNNs across a wide range of computer
vision tasks. However, the achievements of visual transformers are
accompanied by heavy computational costs, making their
deployment impractical under resource-limited scenarios.

Our goal of this work is to prune the attention output channels of
visual transformers while maintaining and even improving the
prediction accuracy of the original transformers.

Such goal is achieved by encouraging the compressed transformers
by channel pruning to better adhere to the Information Bottleneck
(IB) principle. This is inspired by the fact that extensive empirical
and theoretical works have evidenced that models respecting the IB
principle enjoy compelling generalization.
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Contributions

We present a novel and compact transformer block termed
Transformer with Differentiable Channel Selection, or
DCS-Transformer. Using our proposed channel selection in both the
computation for attention weights and the features of the MLP,
DCS-Transformer blocks automatically select channels in queries
and keys to compute more informative attention weights inspired by
the Information Bottleneck (IB) principle.

DCS-Transformer blocks can be used to replace all the transformer
blocks in many popular visual transformers, rendering compact
visual transformers with comparable or even better performance.
The effectiveness of DCS-Transformer is evidenced by replacing all
the transformer blocks with DCS-Transformer blocks into popular
visual transformers which are already compact, including MobileViT,
EfficientViT, ViT-S/16, and Swin-T, for image classification, object
detection and instance segmentation tasks.
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Contributions (Cont’d)

In order to improve the generalization capability of the compressed
transformers after channel pruning, we propose to reduce the IB loss
of our DCS-Transformer model. A model with a smaller IB loss
indicates that the model better adhere to the IB principle. To this
end, we derive the first separable variational upper bound for the IB
loss. Such separable upper bound for IB can be directly
incorporated into existing training loss of deep neural networks even
beyond transformers, and optimized in an end-to-end manner by
standard SGD. Experimental results demonstrate that the IB loss of
the visual transformer can be reduced by optimizing the composite
loss formed by our variational upper bound for the IB loss and the
regular cross-entropy loss, and the transformer network trained with
such variational upper bound exhibits stronger generalization.
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Formulation

The definition of IB loss. Let X be the input training features, X̃
be the learned features by the network, and Y be the ground truth
training labels for a classification task. Then the IB loss is
I(X̃) − I(X̃, Y ), where I(·, ·) denotes mutual information.

There are two types of channel selection in our DCS-Transformer,
which are (1) channel selection for attention weights that renders
more informative attention weights or affinity between tokens; (2)
channel selection for attention outputs which prunes the channels of
the MLP features so as to reduce the FLOPs of the transformer
block.
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Formulation (Cont’d): Two Types of Channel Selection
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Figure 1: DCS-Transformer
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Figure 2: Architecture of DCS-MobileViT
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Formulation (Cont’d): Separable Variational Upper Bound for the IB
Loss

The separable variational upper bound for the IB loss (IB(W)) of a
DCS-Transformer network with weights W is presented in the following
theorem.

Theorem

IB(W) ≤ IBB(W),

where

IBB(W) := 1
n

n∑
i=1

A∑
a=1

B∑
b=1

ϕ(X̃i, a)ϕ(Xi, b) log ϕ(Xi, b)

− 1
n

n∑
i=1

A∑
a=1

C∑
y=1

ϕ(X̃i, a)1I{yi=y} log Q(X̃ ∈ a|Y = y).

IBB(W) is the separable variational upper bound for the IB loss which
can be incorporated into the existing training loss and optimized by the
standard SGD.
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Experiments

We first evaluate the performance of DCS-Transformers on the
ImageNet-1k dataset for image classification, and show that both
models render better performance than state-of-the-art networks
with more compact models.

We then show that using DCS-MobileViT and DCS-EfficientViT as
the feature extraction backbones achieve better mAP with lower
FLOPs than the competing baselines for semantic segmentation and
object detection. Please refer to more details in our paper.
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Experiments (Cont’d): Image Classification on ImageNet-1k
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Figure 3: Top-1 accuracy vs FLOPs
(G) on ImageNet-1k validation set.

Model # Params FLOPs Top-1
T2T 4.3 M 1.1 G 71.7
DeIT 5.7 M 1.2 G 72.2
CrossViT 6.9 M 1.6 G 73.4
MobileViT-XS 2.3 M 0.7 G 74.8
DCS-MobileViT-XS (Ours) 2.0 M 0.5 G 76.8
DeIT 10 M 2.2 G 76.6
T2T 6.9 M 1.8 G 76.5
PiT 10.6 M 1.4 G 78.1
Mobile-Former 9.4 M 0.2 G 76.7
EViT 12.4 M 0.5 G 77.1
TinyViT 5.4 M 1.3 G 79.1
DeIT 22 M 4.6 G 79.8
ToMe 22 M 2.7 G 79.4
EfficientFormer 12.3 M 1.3 G 79.2
MobileViT-S 5.6 M 1.4 G 78.4
VTC-LFC 5.0 M 1.3 G 78.0
SPViT 4.9 M 1.2 G 77.8
ToMe 5.6 M 1.2 G 77.3
DCS-MobileViT-S (Ours) 4.8 M 1.2 G 81.0
EfficientViT-B1 [r224] 9.1 M 0.52 G 79.4
EfficientViT-B1 [r288] 9.1 M 0.86 G 80.4
EViT 8.8 M 0.29 G 74.3
VTC-LFC 8.7 M 0.76 G 79.3
SPViT 8.3 M 0.71 G 79.0
ToMe 9.1 M 0.47 G 78.8
DCS-EfficientViT-B1 [r224] (Ours) 8.2 M 0.46 G 80.8
DCS-EfficientViT-B1 [r288] (Ours) 8.2 M 0.72 G 81.6
ViT-S/16 22.1 M 4.3 G 81.2
DCS-ViT-S/16 (Ours) 20.2 M 3.9 G 82.0
Swin-T 29.0 M 4.5 G 81.3
DCS-Swin-T (Ours) 26.1 M 4.0 G 82.0

Table 1: Comparisons with
baseline methods on
ImageNet-1k validation set.
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Experiments (Cont’d): Instance Segmentation and Object Detection

Methods mAPbox APb
50 APb

75 mAPm APm
50 APm

75

EViT 32.8 54.4 34.5 31.0 51.2 32.2
EfficientViT-B1 33.5 55.4 34.8 31.9 52.3 32.7
DCS-EfficientViT-B1 34.8 56.3 35.3 33.2 53.1 33.3

Table 2: Instance Segmentation Results on COCO.

Feature backbone # Params. FLOPs mAP
MobileNetv3 4.9 M 1.4 G 22.0
MobileNetv2 4.3 M 1.6 G 22.1
MobileNetv1 5.1 M 2.6 G 22.2
MixNet 4.5 M 2.2 G 22.3
MNASNet 4.9 M 1.7 G 23.0
YoloV5-N (640×640) 1.9 M 4.5 G 28.0
Vidt 7.0 M 6.7 G 28.7
MobileViT-XS 2.7 M 1.7 G 24.8
DCS-MobileViT-XS(Ours) 2.4 M 1.5 G 25.8
MobileViT-S 5.7 M 2.4 G 27.7
DCS-MobileViT-S(Ours) 4.7 M 2.1 G 28.7
EfficientViT 9.9 M 1.5 G 28.4
DCS-EfficientViT(Ours) 9.0 M 1.4 G 29.0

Table 3: Object detection performance with SSDLite.
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Key Takeaways

While channel pruning is an effective method for compressing
transformers, it usually results in models with worse prediction
accuracy.

We can maintain a compelling prediction accuracy of a compressed
transformers by reducing its IB loss, a information-theoretical
measure which benefits generalization capability.

The IB loss can be reduced by optimizing a novel separable
variational upper bound for the IB loss (the IBB), and such IBB can
be used to enhance the performance of deep learning models beyond
transformers.
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Thank you!
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