

FADAS: Towards Federated Adaptive Asynchronous Optimization

Yujia Wang! **, Shiqiang Wang**" **, Songtao Lu**" **, Jinghui Chen**!

¹The Pennsylvania State University 2 IBM Research

Federated Learning (FL)

General FL ERM objective:

$$
\min_{x \in R^d} f(x) = \frac{1}{N} \sum_{i=1}^N F_i(x) = \frac{1}{N} \sum_{i=1}^N E_{\xi_i \sim D_i} [F_i(x; \xi_i)]
$$

Steps of FL:

 $\circled{1}$ Server: broadcasts global model x to selected clients

- (2) Clients: local training for K steps and get model difference Δ
- ③ Clients: upload model difference Δ to the server
- ④ Global model aggregation and update (FedAvg, FedProx, FedAMS, etc.)

Adaptive Federated Optimization

- Adaptive optimization shows the advantage over SGD in many cases, e.g., training/finetuning large-scale models
- Incorporating adaptive optimization into FL:
	- Server: take the **Agg()** as a **pseudo-gradient**
	- Apply adaptive optimizer: $x \leftarrow x +$ **adaptive**(Agg(Δ))

Adaptive Federated Optimization

- However, existing adaptive FL methods rely on traditional **synchronous** aggregation:
	- **Clients update at different speeds** due to variable computation and communication capabilities
	- **Server needs to wait** for all participating clients to complete their local training before global updates

Asynchronous Updates for Adaptive Federated Optimization

• Asynchronous updates improve the training efficiency:

Clients update at their own pace; not required to wait for slower ones

FADAS: Federated Adaptive Asynchronous Optimization

How to develop **an asynchronous method for adaptive federated optimization** (with provable guarantees) that enhances training efficiency and is resilient to asynchronous delays?

FADAS: Federated Adaptive Asynchronous Optimization

• Adopts an asynchronous training scheme, with the concept of **concurrency** (the number of clients that are actively performing local training) and **buffer size** (the number of accumulated updates)

• **Global adaptive optimization**

After the server aggregates to obtain model update difference Δ t, it updates via

$$
\begin{cases}\n\boldsymbol{m}_t = \beta_1 \boldsymbol{m}_{t-1} + (1 - \beta_1) \boldsymbol{\Delta}_t, \\
\boldsymbol{v}_t = \beta_2 \boldsymbol{v}_{t-1} + (1 - \beta_2) \boldsymbol{\Delta}_t \odot \boldsymbol{\Delta}_t, \\
\widehat{\boldsymbol{v}}_t = \max(\widehat{\boldsymbol{v}}_{t-1}, \boldsymbol{v}_t).\n\end{cases}
$$
\n(3)

FADAS: Federated Adaptive Asynchronous Optimization

• **Delay tracking**

The **server tracks the delay**: x_{t} is sent to client *i* at communication round t' , and $\Delta^{\rm i}_{t}$ is received at communication round t

 \rightarrow the gradient delay for Δ_t^i is $\tau_t^i = t - t'$

• **Delay-adaptive learning rate**

The received model updates at communication round t have a maximum delay of

• $\tau_t^{\max} := \max\{\tau_t^i, i \in M_t\},\$

where clients in M_t update to the server.

With a <u>delay threshold</u> τ_c , define a **delay-adaptive learning rate** as in Eq. (4)

- \triangle **Turn the learning rates down** for the model update Δ_t^i with larger delays.
- $\mathbf{\hat{v}}$ If $\tau_t^{\max} > \tau_c$, scale η_t down to **avoid updates with high latency worsening convergence**

$$
\eta_t = \begin{cases} \eta & \text{if } \tau_t^{\max} \le \tau_c, \\ \min\left\{\eta, \frac{1}{\tau_t^{\max}}\right\} & \text{if } \tau_t^{\max} > \tau_c. \end{cases}
$$
(4)

Convergence Analysis

• **Standard FADAS without delay adaptation** (assumptions of smoothness, bounded variance, bounded gradient, bounded delay, and uniform arrivals are assumed):

Corollary A.2. If we choose the global learning rate $\eta = \Theta(\sqrt{M})$ and $\eta_l = \Theta\left(\frac{\sqrt{F}}{\sqrt{TK(\sigma^2 + K\sigma^2)}}\right)$ in Theorem A.1, then for

sufficiently large T, the global iterates $\{\boldsymbol{x}_t\}_{t=1}^T$ of Algorithm 1 satisfy

$$
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[\|\nabla f(\boldsymbol{x}_t)\|^2] \leq \mathcal{O}\left(\frac{\sqrt{\mathcal{F}\sigma}}{\sqrt{TKM}} + \frac{\sqrt{\mathcal{F}\sigma}_g}{\sqrt{TM}} + \frac{\mathcal{F}G}{T}\right) + \frac{\mathcal{F}\tau_{\text{max}}\tau_{\text{avg}}}{T}\right),
$$
\nwhere $\mathcal{F} = f(\boldsymbol{x}_1) - f_*, f_* = \min_{\boldsymbol{x}} f(\boldsymbol{x}) > -\infty$. Standard in FL rates Standard in $\frac{\tau_{\text{max}}}{\tau_{\text{avg}}}$: average of the maximum adaptive FL rates

- ❖ Compared with the convergence rate of FedBuff in [a] and [b], FADAS obtains a relaxed dependency on the worst-case gradient delay $\tau_{\rm max}$
- When τ_{max} is large, the last term becomes the dominant term in the convergence rate \rightarrow A large worst-case delay τ_{max} may lead to a worse convergence rate

[[]a] Nguyen, John, et al. "Federated learning with buffered asynchronous aggregation." International Conference on Artificial Intelligence and Statistics. PMLR, 2022. [b] Toghani, Mohammad Taha, and César A. Uribe. "Unbounded gradients in federated learning with buffered asynchronous aggregation." *2022 58th Annual Allerton Conference on Communication, Control, and Computing (Allerton)*. IEEE, 2022.

Convergence Analysis

• **Delay-adaptive FADAS**

 τ_{median} : the median of the maximum delay over all communication rounds T
Corollary A.3. If we pick $\tau_c = \tau_{\text{median}}$, the global learning rate $\eta = \Theta(\sqrt{M}/\tau_c)$ and $\eta_l = \Theta(\frac{\tau_c \sqrt{F}}{\sqrt{TK(\sigma^2 + K \sigma_c^2)}})$, then for sufficiently large T, the global iterates $\{\boldsymbol{x}_t\}_{t=1}^T$ of Algorithm 1 satisfy

$$
\frac{1}{\sum_{t=1}^T \eta_t} \sum_{t=1}^T \eta_t \mathbb{E}[\|\nabla f(\boldsymbol{x}_t)\|^2] \leq \mathcal{O}\bigg(\frac{\sqrt{\mathcal{F}}\sigma}{\sqrt{TKM}} + \frac{\sqrt{\mathcal{F}}\sigma_g}{\sqrt{TM}}\bigg| + \frac{\mathcal{F}G\tau_c}{T\sqrt{M}} + \frac{\mathcal{F}\tau_{\text{avg}}}{T} + \frac{\mathcal{F}(\tau_c^2 + \tau_c\tau_{\text{avg}})}{T}\bigg),
$$

where $\mathcal{F} = f(\boldsymbol{x}_1) - f_*,$ $f_* = \min_{\boldsymbol{x}} f(\boldsymbol{x}) > -\infty$. Standard in FL rates **Delay related but does not rely on** τ_{max} !

- v The convergence rate here **does not rely on the (possibly large) worst-case delay** τ_{max}
	- **EXA Delay-adaptive FADAS is less sensitive to stragglers who may cause a large worst**case delay
- When $\tau_c = \tau_{\text{median}} \approx \tau_{\text{avg}} \ll \tau_{\text{max}}$, delay adaptation relaxes the requirement from τ_{max} to τ_{median} for achieving the desired convergence rate

Experiments

- Simulate two scenarios: *large worst-case* delay and *mild* delay
- FADAS and its delay-adaptive variant achieve superior test accuracy compared to FedAsync and FedBuff

CIFAR-10, *large worst-cas*e delay CIFAR-10, *mild* delay

Method	Dir(0.1) Acc. & std.	Dir(0.3) Acc. & std.
FedAsync	42.48 ± 4.93	71.76 ± 3.85
FedBuff	72.15 ± 2.71	79.82 ± 3.25
FADAS	77.68 ± 2.32	82.93 ± 0.81
FADAS _{da}	78.93 ± 0.83	83.91 \pm 0.54

GLUE benchmark (selected), *mild* delay

Experiments

• Running time comparisons

Training/fine-tuning time simulation, *mild* delay

Observation:

 \cdot In the *large worst-case* delay setting, we observe that $\tau_{\text{avg}} = 10.89$,

 $\tau_{\text{median}} = 6.0$, and $\tau_{\text{max}} = 127$,

which satisfies $\tau_{\text{median}} \approx \tau_{\text{avg}} \ll \tau_{\text{max}}$ in the previous analysis

 $\bullet\bullet$ In practice, different thresholds $\tau_c \in \{1,4,8,10\}$ result in similar test accuracy.

Experiments

- **Ablation studies** indicate that
	- ❖ smaller concurrency yields better results
	- ❖ larger buffer sizes achieve higher accuracy

❖ smaller buffer sizes require less training time to reach a target accuracy of 70%, particularly in the early stages of training

Thank you!

Please check our full paper through

Welcome to our poster session: **Hall C 4-9 #1208**

