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Federated Learning (FL)

General FL ERM obijective:
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Steps of FL:
(1) Server: broadcasts global model x to selected clients

(2 Clients: local training for K steps
and get model difference A

(3 Clients: upload model difference A to the server
4) Global model aggregation and update (FedAvg,
FedProx, FedAMS, etc.)
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Adaptive Federated Optimization

« Adaptive optimization shows the advantage over SGD in many cases, €.g., training/fine-
tuning large-scale models

 Incorporating adaptive optimization into FL:

» Server: take the Agg(4) as a pseudo-gradient xx @
« Apply adaptive optimizer: x < x + adaptive(Agg(4)) Server 2 4y adaptive(Agg(4))
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Adaptive Federated Optimization

* However, existing adaptive FL methods rely on traditional synchronous aggregation:

« Clients update at different speeds due to variable computation and communication
capabilities

- Server needs to wait for all participating clients to complete their local training before
global updates



Asynchronous Updates for Adaptive Federated
Optimization

« Asynchronous updates improve the training efficiency:
Clients update at their own pace; not required to wait for slower ones
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FADAS: Federated Adaptive Asynchronous
Optimization

How to develop an asynchronous method for adaptive federated
optimization (with provable guarantees) that enhances training
efficiency and is resilient to asynchronous delays?
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FADAS: Federated Adaptive Asynchronous
Optimization

« Adopts an asynchronous training scheme, with the concept of concurrency (the number
of clients that are actively performing local training) and buffer size (the number of
accumulated updates)

» Global adaptive optimization

After the server aggregates to obtain model update difference A_t, it updates via

f

my = fimi_1 + (1 — B1)Ay,
¢ v =PBovi1+ (1 —B2)A: © Ay, 3)

’l/;t = max('t’it_l, ’Ut).




FADAS: Federated Adaptive Asynchronous
Optimization

* Delay tracking
The server tracks the delay: x,: is sent to client i at communication round t', and

Al is received at communication round ¢
- the gradient delay for A} ist; =t —t'

* Delay-adaptive learning rate
The received model updates at communication round t have a maximum delay of

o M .= max{tl,i € M,},
where clients in M; update to the server.
With a delay threshold 7., define a delay-adaptive learning rate as in Eq. (4)

% Turn the learning rates down for the model update AL with larger delays.
s If £ > 1., scale n; down to avoid updates with high latency worsening

convergence )
N 7T < i,
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Convergence Analysis

« Standard FADAS without delay adaptation (assumptions of smoothness, bounded
variance, bounded gradient, bounded delay, and uniform arrivals are assumed):

Corollary A.2. If we choose the global learning rate n = ©(\/ M) and n; = © VF in Theorem A. 1, then for
\/TK(02+K02)

sufficiently large T, the global iterates {x;}]_, of Algorithm I satisfy
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Standard in FLrates giandardin max- maximum delay _
Tavg. average of the maximum

delay over time

where F = f(x1) — fs, f« = ming f(x) > —o0.
adaptive FL

rates

s Compared with the convergence rate of FedBuff in [a] and [b], FADAS obtains a relaxed
dependency on the worst-case gradient delay 7,4«
* When 7, Is large, the last term becomes the dominant term in the convergence rate

-> A large worst-case delay t,,,, may lead to a worse convergence rate

[a] Nguyen, John, et al. "Federated learning with buffered asynchronous aggregation." International Conference on Artificial Intelligence and Statistics. PMLR, 2022.
[b] Toghani, Mohammad Taha, and César A. Uribe. "Unbounded gradients in federated learning with buffered asynchronous aggregation." 2022 58th Annual Allerton Conference on

Communication, Control, and Computing (Allerton). IEEE, 2022.



Convergence Analysis

* Delay-adaptive FADAS

Tmedian. the median of the maximum delay over all communication rounds T

Corollary A.3. If we pick T, = Tmedian, the global learning rate n = ©(v/ M /71.) and n; = @( Vis KT(CU‘gf ) ) then for

sufficiently large T, the global iterates {x:}1_, of Algorithm 1 satisfy

T
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ElV f(x 2<0( + 9|+ c y JTavg | c cTavg >,
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where F = f(x1) — fx, f+ = ming f(x) > —oc.Standard in FlLrates Delay related but does notrely on 7, !

*» The convergence rate here does not rely on the (possibly large) worst-case
delay 7,

*» Delay-adaptive FADAS is less sensitive to stragglers who may cause a large worst-
case delay

< When 7, = Tpedian ® Tavg <K Tmax » delay adaptation relaxes the requirement from
Tmax 1O Tmedian fOr achieving the desired convergence rate




Experiments

« Simulate two scenarios: large worst-case delay and mild delay

 FADAS and its delay-adaptive variant achieve superior test accuracy compared to
FedAsync and FedBuff

CIFAR-10, large worst-case delay CIFAR-10, mild delay

Dir(0.1) Dir (0.3) Dir(0.1) Dir (0.3)
Method Acc. & std. Acc. & std. Method Acc. & std. Acc. & std.
FedAsync | 50.92 &+ 5.03 753 +6.18 FedAsync | 4248 493 71.76 & 3.85
FedBuff 3868 1-8.16 51.32-4443 FedBuff 12152271 79824325
FADAS 72.0 + 0.94 73.27 +1.37 FADAS 77.68 +=2.32 82.93 + 0.81
FADAS4, | 73.96 +£3.54 79.68 +2.14 FADAS . | 78.93 +=0.83 83.91 4+ 0.54
GLUE benchmark (selected), mild delay
RTE MRPC SST-2

Method Acc. & std. Acc. & std. Acc. & std.

FedAsync | 49.46 +2.66 69.71 =1.02 90.02 £ 0.79

FedBuff 61.61 =490 76.80+6.05 78.37 +4.86

FADAS 64.26 =230 83.33+1.20 90.76 + 0.26

FADAS . 65.10 =240 83.09+4+1.71 90.05 + 1.80




Experiments

* Running time comparisons

Training/fine-tuning time simulation, mild delay
Acc. | FedAvg FedAMS FADAS FADAS,.

CIFAR-10 5% | 2257.7 648.7 228.0 2379
CIFAR-100 | 50% | 1806.3 546.9 209.8 209.8

RTE 63% | 921.9 412.4 376.2 436.9
MRPC 80% | 1018.1 424.0 368.3 370.1
SST-2 90% : 4952 73.8 57.2
Observation:

< In the large worst-case delay setting, we observe that 7,,, = 10.89,
Tmedian = 6.0, and T, = 127,
which satisfies Tmedian & Tavg K Tmax iN the previous analysis

% In practice, different thresholds z. € {1,4,8,10} result in similar test
accuracy.



Test Accuracy
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Experiments

« Ablation studies indicate that
** smaller concurrency yields better results
¢ larger buffer sizes achieve higher accuracy

“* smaller buffer sizes require less training time to reach a target accuracy of 70%, particularly in
the early stages of training
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