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Summary

Memory Separation

Exact Memory Retrieval with U-Hop

* We propose to use a learnable linear kernel as the similarity measure
in modern Hopfield models, resulting in kernelized memory Hopfield
energy.

* We propose a two-stage retrieval dynamics termed U-Hop. The first
stage maximizes the separation between memories in kernel space
by optimizing the linear kernel. The second stage performs energy
minimization with kernel induced retrieval dynamics.

« Empirically, U-Hop improves memory retrieval outcomes by a large
margin comparing to other baselines. When applied to deep learning
scenarios, U-Hop significantly improves model's memorization capac-
ity, generalization and convergence speed.

Kernelized Memory Hopfield Model

Let x € R be the input query, and 2 := {¢}). |, € R"*? be the memory
set.

Definition 1 («-EntMax) Let z,p € RY, and A™ = {p € RY |

> pu = 1} be the (M — 1)-dimensional unit simplex. Let ¥, (p) be
the Tsallis a-entropy The a-EntMax is defined as

a-EntMax(z) = ArgMax|(p,z) — VU, (p)]-
peAM
Let K(-,-) = (®(-),®(-)) : R* x RY — R, where & : R* — RP?* and
Dg > d. Let feature map ® be ®(u) := Wu with W € RP*x4 for any
u € R,

Assumption 1 W e RP*>*? with Dg >> d is full rank.

Definition 2 (Kernelized Memory Hopfield Energy) Let x € R be
the input query, = € R*M be the stored memory set.

Br(x) = 5K (x.x) — ¥} (8. K(2 x)),

where U is the convex conjugate of the Tsallis entropic regularizer.

Theorem 1 (Kernelized Memory Hopfield Retrieval Dynamics)
With Assumption 1, the energy function E(x) was monotonically
decreased by the following retrieval dynamics:

Te (x) =2 - a-EntMax (6 - K (E,x)) .

* The assumption of W being full column rank is necessary for us to
be able to project memories into feature space and back.

* The full-column rank assumption is also critical for kernelized mem-
ory Hopfield models to preserve the defining properties of modern
Hopfield models.

* The Kernelized Memory Hopfield construction is compatible for vari-
ous of existing modern Hopfield models, such as modern Hopfield ,
sparse modern Hopfield, etc.

Definition 3 (Pattern Stored and Retrieved) For all © € [M], let
Ro == 5 Min, 4., .ep | 2(€,) — @(£,)] be the finite radius of each
(kernelized) sphere S¢ ,, centered at (kernelized) memory pattern

d(&,). We say &, is stored if there exists a generalized fixed point
of Tic, such that &(x%) € S ,, to which all limit points ®(x) € Ss ,
converge to, and Sqw NS, = 0 for v # u. We say &, is e-retrieved
by Txc with x for an error e.

Lemma 1 (Retrieval Error Bound of 7x) Let AY = K(£,),&,) —
Max, (a2 K(&v, €,) D€ the separation between a memory pattern
¢, from all other memories in the feature space. Assuming patterns
are normalized in feature space, we have

[ Tie () — &l < 2(M — 1)e~P(Bu—2Fe),
In comparison, the retrieval error bound of the modern Hopfield mod-
els is
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A critical aspect of our kernelized memory Hopfield models is we suc-
cessfully relax the dependency on A, to A% which can be optimized
by searching for a better .

where A,

With controllable separation, we are able to obtain the conditions of
exact retrieval under Ti.

Theorem 2 (Exact Memory Retrieval) Let 7gpase b€ T from re-
trieval dynamics with o > 1. Let K be a real-valued kernel with feature
map ®. Lett > 0,8 > 0. Supposed the query x € S ,,, P (£,,) IS the
fixed point of Tsparse If the following condition is satisfied:

ot
fo (8§, &) — maxle (&, §u) < Bla 1)

Further, let L > 0 be the Lipschitz constant of . Following the above
result, 7x achieves exact memory retrieval if

2
Min — & > .
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Experimental Studies

U-Hop: Two Stage Memory Retrieval

To search for a better ® with larger separation, we propose to optimize
® under the average separation loss:

Definition 4 (Average Separation Loss) Given a stored memory
set =, and a feature map ® : RY — RP*, the separation loss of
the function ® is L4 (E;t) :=1log E _[|G; (®(u),®(v))], t > 0.

u,vee =

* Minimization of L4 leads to an on-average dissimilarity among ker-
nelized memory patterns, i.e., {®(&§,) } ueim

* Lg IS convex by design and hence exists an optimizer W* that maxi-
mizes the average distance between all possible memory pairs.

Algorithm 1 U-Hop: Two-5Stage Memory Retrieval

Input: Separation (Stage I) iterations /N, Energy (Stage II) iteration 7', feature map ¢ (x) := Wx,
memory set =, query X, retrieval dynamics 7T, learning rate v < 1/ where (i is the Lipschitz
constant of L4(=)

QOuitput: x

I: forz=1,...N do

22 W W —9-Vwls(E). /I Stage 1
3: end for

4. Normalize the rows of W

5. x" ¢ x

6: fort =1.... 7 do

7. X 4+ Tx (x) using Theorem 2.1 /l Stage 11
&: end for

9: return x

Memory Retrieval Error Comparison:
* All four plots show U-Hop retrieved patterns with significantly less error com-
pared to all existing baselines across all sizes of memory and noise levels.
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Image Classification Task:

* The result demonstrates with U-Hop, models are able to consistently mem-
orize more samples in the training data, and further obtain generalization
improvement.

* For interpretation on maximal training accuracy, please refer to Theorem 3.1
in the original paper.

Models CIFAR10 CIFAR100 Tiny ImageNet

Max Train Acc. Test Acc. Max Train Acc.  Test Acc. Max Train Acc. Test Acc.
MHM 56.0% 52.2% 32.3% 26.3% 48.9% 12.2%
MHM + U-Hop 64.6% 55.2% 44.1% 28.7% 61.4% 12.7%
Sparse MHM 55.9% 52.0% 49.6% 26.0% 17.2% 12.3%
Sparse MHM + U-Hop 66.4% 55.4% 45.4% 29.0% 60.6% 12.5%

Model Convergence Comparison on CIFAR100:
 Left to right: Training Accuracy, Test Accuracy, Training and Test Loss.

* For generalization power and convergence speed, models with U-Hop outper-
form other baselines by a large margin.




