
UniformMemoryRetrievalwithLargerCapacity
forModernHopfieldModels

Dennis Wu*† Jerry Yao-Chieh Hu*† Teng-Yun Hsiao ♮ Han Liu†
† Northwestern University, Evanston, IL 60208 USA; ♮ National Taiwan University, Taipei 10617, Taiwan

Summary

• We propose to use a learnable linear kernel as the similarity measure
in modern Hopfield models, resulting in kernelized memory Hopfield
energy.

• We propose a two-stage retrieval dynamics termed U-Hop. The first
stage maximizes the separation between memories in kernel space
by optimizing the linear kernel. The second stage performs energy
minimization with kernel induced retrieval dynamics.

• Empirically, U-Hop improves memory retrieval outcomes by a large
margin comparing to other baselines. When applied to deep learning
scenarios, U-Hop significantly improves model’s memorization capac-
ity, generalization and convergence speed.

Kernelized Memory Hopfield Model

Let x ∈ Rd be the input query, and Ξ := {ξ}Mµ=1 ∈ RM×d be the memory
set.

Definition 1 (α-EntMax) Let z,p ∈ RM , and ∆M := {p ∈ RM
+ |∑M

µ pµ = 1} be the (M − 1)-dimensional unit simplex. Let Ψα(p) be
the Tsallis α-entropy The α-EntMax is defined as

α-EntMax(z) := ArgMax
p∈∆M

[⟨p, z⟩ −Ψα(p)].

Let K(·, ·) := ⟨Φ(·),Φ(·)⟩ : Rd × Rd → R+, where Φ : Rd → RDΦ and
DΦ ≫ d. Let feature map Φ be Φ(u) := Wu with W ∈ RDΦ×d for any
u ∈ Rd.

Assumption 1 W ∈ RDΦ×d with DΦ >> d is full rank.

Definition 2 (Kernelized Memory Hopfield Energy) Let x ∈ Rd be
the input query, Ξ ∈ Rd×M be the stored memory set.

EK(x) =
1

2
K(x,x)−Ψ⋆

α

(
β,K(Ξ⊤x

)
),

where Ψ⋆
α is the convex conjugate of the Tsallis entropic regularizer.

Theorem 1 (Kernelized Memory Hopfield Retrieval Dynamics)
With Assumption 1, the energy function E(x) was monotonically
decreased by the following retrieval dynamics:

TK (x) = Ξ · α-EntMax (β · K (Ξ,x)) .

• The assumption of W being full column rank is necessary for us to
be able to project memories into feature space and back.

• The full-column rank assumption is also critical for kernelized mem-
ory Hopfield models to preserve the defining properties of modern
Hopfield models.

• The Kernelized Memory Hopfield construction is compatible for vari-
ous of existing modern Hopfield models, such as modern Hopfield ,
sparse modern Hopfield, etc.

Memory Separation

Definition 3 (Pattern Stored and Retrieved) For all µ ∈ [M ], let
RΦ := 1

2 Minν ̸=µ;ν,µ∈[M ] ∥Φ(ξµ)− Φ(ξν)∥ be the finite radius of each
(kernelized) sphere SΦ,µ centered at (kernelized) memory pattern
Φ(ξµ). We say ξµ is stored if there exists a generalized fixed point
of TK, such that Φ(x⋆

µ) ∈ SΦ,µ, to which all limit points Φ(x) ∈ SΦ,µ

converge to, and SΦ,µ ∩ SΦ,ν = ∅ for ν ̸= µ. We say ξµ is ϵ-retrieved
by TK with x for an error ϵ.

Lemma 1 (Retrieval Error Bound of TK) Let ∆Φ
µ := K(ξµ), ξµ) −

Maxν∈[M ],ν ̸=µ K(ξν , ξµ) be the separation between a memory pattern
ξµ from all other memories in the feature space. Assuming patterns
are normalized in feature space, we have

∥TK(x)− ξµ∥ ≤ 2(M − 1)e−β(∆Φ
µ−2RΦ).

In comparison, the retrieval error bound of the modern Hopfield mod-
els is

∥TMHM(x)− ξµ∥ ≤ 2(M − 1)e−β(∆µ−2R),
where ∆µ := ⟨ξµ, ξµ⟩ −Maxν∈[M ],ν ̸=µ ⟨ξν , ξµ⟩.

A critical aspect of our kernelized memory Hopfield models is we suc-
cessfully relax the dependency on ∆µ to ∆Φ

µ , which can be optimized
by searching for a better Φ.

U-Hop: Two Stage Memory Retrieval

To search for a better Φ with larger separation, we propose to optimize
Φ under the average separation loss:

Definition 4 (Average Separation Loss) Given a stored memory
set Ξ, and a feature map Φ : Rd → RDΦ , the separation loss of
the function Φ is LΦ (Ξ; t) := log E

u,v∼Ξ
[Gt (Φ(u),Φ(v))], t > 0.

• Minimization of LΦ leads to an on-average dissimilarity among ker-
nelized memory patterns, i.e., {Φ(ξµ)}µ∈[M ].

• LΦ is convex by design and hence exists an optimizer W⋆ that maxi-
mizes the average distance between all possible memory pairs.

• Combining separation loss minimization and TK(·), we obtain U-Hop.

Exact Memory Retrieval with U-Hop

With controllable separation, we are able to obtain the conditions of
exact retrieval under TK.

Theorem 2 (Exact Memory Retrieval) Let Tsparse be TK from re-
trieval dynamics with α > 1. Let K be a real-valued kernel with feature
map Φ. Let t > 0, β > 0. Supposed the query x ∈ SΦ,µ, Φ (ξµ) is the
fixed point of Tsparse if the following condition is satisfied:

ℓΦ (ξµ, ξµ)− max
ν,ν ̸=µ

ℓΦ (ξν , ξµ) ≤ − 2t

β(α− 1)
.

Further, let L > 0 be the Lipschitz constant of Φ. Following the above
result, TK achieves exact memory retrieval if

Min
ν∈[M ],ν ̸=µ

||ξµ − ξν || ≥

√
2

L2β(α− 1)
.

Experimental Studies

Memory Retrieval Error Comparison:
• All four plots show U-Hop retrieved patterns with significantly less error com-

pared to all existing baselines across all sizes of memory and noise levels.

Image Classification Task:
• The result demonstrates with U-Hop, models are able to consistently mem-

orize more samples in the training data, and further obtain generalization
improvement.

• For interpretation on maximal training accuracy, please refer to Theorem 3.1
in the original paper.

Model Convergence Comparison on CIFAR100:
• Left to right: Training Accuracy, Test Accuracy, Training and Test Loss.
• For generalization power and convergence speed, models with U-Hop outper-

form other baselines by a large margin.


