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Introduction

Partial identification (PI) presents a significant challenge in causal inference due to the

incomplete measurement of confounders. Given that obtaining auxiliary variables of

confounders is not always feasible and relies on untestable assumptions, researchers

are encouraged to explore the internal information of latent confounders without ex-

ternal assistance. However, these prevailing PI results often lack precise mathematical

measurement from observational data or assume that the information pertaining to

confounders falls within extreme scenarios. In our paper, we reassess the significance

of the marginal confounder distribution in PI. We refrain from imposing additional

restrictions on the marginal confounder distribution, such as entropy or mutual infor-

mation. Instead, we establish the closed-form tight PI for any possible P(U) in the dis-

crete case. Furthermore, we establish the if and only if criteria for discerning whether

the marginal confounder information leads to non-vanilla PI regions. This reveals a

fundamental negative result wherein the marginal confounder information minimally

contributes to PI as the confounder’s cardinality increases. Experiments support our

theoretical findings.

Motivation

With P(U) at hand, previous literature usually lacks precise mathematical measure-

ments from observational data or assumes that the information pertaining to con-

founders falls within extreme scenarios.

We provide a “white-box” mapping from the marginal distribution of confounders

to casual queries. We provide an in-depth relationship between the subset-sum

problem in TCS and partial identification in causal inference/economics.
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Figure 1. The causal graph constructed by treatment X , outcome Y , and confounders U . We focus

on the tight partial identification of causal queries solely through the information of marginal

distribution P(U) with observed P(X, Y ).

Definition and Problem Formulation

When the information P(U) is not accessible, Judea Pearl shows that

P(y | do(x)) = P(x, y) +
∑

u

P(y, u, x)
P(u, x)

P(u, ¬x) (1)

belongs to [P(x, y),P(x, y) + P(¬x)], where since x ∈ {0, 1}, we write ¬x ≡ 1 − x, i.e.,
that P(¬x) ≡ P(X = 1 − x). We denote P(x, y) and P(x, y) + P(¬x) as the “vanilla

lower bound” and “vanilla upper bound” of P(y | do(x)), respectively.
Stepping forward, we denote −P(X = 1, Y = 0) − P(X = 0, Y = 1), P(X = 1, Y =
1) + P(X = 0, Y = 0) and P(Y = 1 | X = 1) − P(Y = 1 | X = 0) as the ‘vanilla lower

bound of ATE’, ‘vanilla upper bound of ATE’,‘vanilla extreme bound of ATE’. Such lower

and upper vanilla bounds have already been derived from previous literature.

Assumption

Positivity ∀x ∈ {0, 1}, y ∈ {0, 1}, P(x, y) > 0. We also invoke the following assumption

on the properties of P(U). Moreover, U is a discrete random variable taking values in

{0, . . . , du − 1}. Moreover, there does not exist a u′ such that P(U = u′) = 1.
Our setting could be easily generalized to the continuous cases, observed confounder

cases, etc.

Theorem (Binary case & General case)

Theorem (Identification of interventional probability)

Suppose du = 2 and the distribution P(U) observable. The tight identification region of the

interventional probability P(y | do(x)) is given by[
min

t∈{0,1}
LB (P(U = t)) , max

t∈{0,1}
UB (P(U = t))

]
.

Here LB(·), UB(·) are two piece-wise linear functions defined as
P(x,y)−t
P(x)−t (1 − t) + t t ∈ (0,P(x, y)]
P(x, y) t ∈ (P(x, y),P(x)]
P(y | x)t t ∈ (P(x), 1)

and


P(y | x)(1 − t) + t t ∈ (0,P(¬x)]
P(x, y) + P(¬x) t ∈ (P(¬x), 1 − P(x, ¬y)]

P(x,y)t
P(x)−(1−t) t ∈ (1 − P(x, ¬y), 1)

.

(2)

Theorem (Identification of average treatment effect)

Consider the same setup as Theorem 1, then the tight identification region of ATE is given

by [
min

t∈{0,1}
{−B(P(U = t); 0, 1)}, max

t∈{0,1}
B(P(U = t); 1, 1)

]
,

where B(t; x, y) := 

(
− P(y | ¬x) + P(x,y)

P(x)−t

)
(1 − t) t ∈ (0, p0]

−P(y | ¬x)(1 − t) − P(x, ¬y) + 1 t ∈ (p0, p1]
−P(¬x, y) + P(y | x)t + (1 − t) t ∈ (p1, p2](

− P(¬x,y)−(1−t)
P(¬x)−(1−t) + P(y | x)

)
t t ∈ (p2, 1)

.

Here p0 = P(x, ¬y), p1 = P(x), p2 = 1 − P(¬x, y).

Theorem (IFF condition for interventional probability)

The tight lower bound of the interventional probability P(y | do(x)) given prior knowledge

of P(U) is equal to the vanilla lower bound if and only if P(U) belongs to PL :={
P(U) : ∃ U ⊆ R s.t. P(U ∈ U) ∈ [P(x, y),P(x)]

}
.

Analogously, the if and only if condition for the degeneration of upper bound is when P(U)
belongs to PU :={

P(U) : ∃ U ⊆ R s.t. P(U ∈ U) ∈ [P(¬x), 1 − P(x, ¬y)]
}

.

Thus the tight identification region of P(y | do(x)) given prior knowledge of P(U) is equal
to the vanilla bound if and only if P(U) ∈ P := PL ∩ PU .

Theorem (IFF condition for ATE)

The if and only if conditions for the tight upper and lower bounds of the average treatment

effect to degenerate into vanilla bounds are when P(U) belongs to
PL

ATE := {P(U) : ∃ U0, U1 ⊆ R with U0 ∩ U1 = ∅, s.t.
∀z ∈ {0, 1},P(U ∈ Uz) ∈ Iz,z} ,

where Ix′,y′ := [P(X = x′, Y = y′),P(X = x′)] for x′, y′ ∈ {0, 1} and

PU
ATE := {P(U) : ∃ U0, U1 ⊆ R with U0 ∩ U1 = ∅, s.t.

∀z ∈ {0, 1},P(U ∈ Uz) ∈ I¬z,z} ,

respectively. Thus, the identification region of the average treatment effect is vanilla if and

only if P(U) ∈ PATE := PL
ATE ∩ PU

ATE.

Counter-Intuitive negative result

2 4 6 8 10 12 14 16
du

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

(X, Y) = [(0.02, 0.48)T, (0.01, 0.49)T] 
The probability of (U) ( L)c

The probability of (U) ( U)c

The probability of (U) ( )c

The probability of (U) ( L
ATE)c

The probability of (U) ( U
ATE)c

The probability of (U) ( ATE)c

2 4 6 8 10 12 14 16
du

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

(X, Y) = [(0.02, 0.48)T, (0.49, 0.01)T] 
The probability of (U) ( L)c

The probability of (U) ( U)c

The probability of (U) ( )c

The probability of (U) ( L
ATE)c

The probability of (U) ( U
ATE)c

The probability of (U) ( ATE)c

2 4 6 8 10 12 14 16
du

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

(X, Y) = [(0.48, 0.02)T, (0.01, 0.49)T] 
The probability of (U) ( L)c

The probability of (U) ( U)c

The probability of (U) ( )c

The probability of (U) ( L
ATE)c

The probability of (U) ( U
ATE)c

The probability of (U) ( ATE)c

2 4 6 8 10 12 14 16
du

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

(X, Y) = [(0.48, 0.02)T, (0.49, 0.01)T] 
The probability of (U) ( L)c

The probability of (U) ( U)c

The probability of (U) ( )c

The probability of (U) ( L
ATE)c

The probability of (U) ( U
ATE)c

The probability of (U) ( ATE)c

Figure 2. The probability that P(U) satisfies the if and only if condition given by Theorem 3 with

varying du. Here P(U) is uniformly sampled on the (du − 1)− probability simplex via 106 Monte

Carlo simulations. There are four types of observed data which are recorded as

P(X, Y ) = [(P(X = 1, Y = 1),P(X = 1, Y = 0))T , (P(X = 0, Y = 1),P(X = 0, Y = 0))T ], x = y = 1.
The probability of P(U) ∈ (P)c and P(U) ∈ (PATE)c both monotonically decreases to zero with

increasing du, and the degeneration rate of P(U) ∈ (P)c is lower than that of P(U) ∈ (PATE)c.

More results

Proposition

The lower/upper tight identification bound of average treatment effect ATE is controlled

by a SSP problem:

min
(

|P(U ∈ U0) − t0| + |P(U ∈ U1) − t1|
)

,

s.t. U0, U1 ⊆ R, U0 ∩ U1 = ∅, t0 ∈ I, t1 ∈ I ′.
(3)
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