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Background: Neural Differential Equations Methodology Training the Network t _
V ) _ 2
A Neural Differential Equation is a differential equation using a neural Vertical Separation of the Weights L7(0) = By, _bgp(DW) K;/t1 [uolt, wi)l] dt_ ’
network to parametrise the vector field. et w; € R% be the weights of layer t € [0,1], and t; < t, be cutoff where ug(t, we) = gy(t, we) ~ [fp(t, we) — fylt, wi; ©)].
o DOoINtS: i l -
t H . S Sy (2
— = fy(t, hy), ho = =, . LY(O)=FE, |lo Dw—/f/ Up (T, W dt| ,
dt folt, u), b " Fort & (t1,1s), the dynamics of w; are deterministic: ©) " s D) A i ()| i
where fy : R x RW<*d and y : [0,T] — R4 is the solution. dw; = f,(t,wy; 0)dt. with g (£, wy) = g,(t, wy) ™" [folt, wy) — f3' (8, wy; Og)].
Similarly, discrete-depth residual networks can be defined as: As for the prior, we use an Ornstein-Uhlenbeck process:
hivs =hi +0f(hpwy), t=1,..T, = Fort € (t, 1), wy IS a random vector and we perform Bayesian N N~ ol
o 1 | inference. We define a prior as the solution of the SDE and an folws ) w - glwi,t) = ol
In the limit where § = T and T" — oo, we obtain a Neural ODE. approximate posterior:: Theoretical Results

dwt = fp(t, wt)dt + gp(t, wt)dBt, dwt = fq(t, Wy, 9)dt+gp(t, wt)dBt.

Background: (Partially Stochastic) Bayesian NNs Theorem. Let X,Y be random variables taking values in X C R%,Y C

Lo R% respectively. Assume X is compact. Assume further that there exists a
1. Place a prior on the weights of the network, e.g. continuous generator function f : R™xX — ) forthe conditional distribu-
p(w) = N(w;0,nI). " tion Y| X forsomem > d,. Consider a PSDE-BNN model given by (1), with
| | B | , S ood — —~ N~ dy, d, large enough. Then, for all e > 0, there exist A € F, ho, fn, f4, G, 0,
2 Defne an ot?servahon model, .8 plylx, 0) = Nly: folx), o7), | a linear operator L and a random variable n ~ N (0, I,,,) independent of X
3. Apply Bayes Rule: -0.5- cuch that
N .
p(@‘p> x p(@) Hp(y(z)‘x(z)’ (9) 0000 025 o.fo 075 1.00 0.00 0.25 O';SO 0.75 1.00 (Z) IP)(A) > 1—¢, i
—1 (it) Vw € A,x € X, [|L(Y1(w, ) — f(n(w),x)]| < e,
Partial Stochasticity: © — O U © Horizontal Separation of the Weights |.e. there exists a PSDE-BNN that approximates Y'| X with high probability.
: O =05 D

Experimental Results
Background: SDEs as Approximate Posteriors P

. . . . . . . : : MNIST CIFAR-10
A d-dimensional SDE driven by a m-dimensional Brownian motion on 2 2
: 1) Model Accuracy (%) T ECE (x107“)] Accuracy (%) T ECE (x107%)]
an interval [0, T:
- ity ResNet321 99.46 + 0.00  2.88 £0.94 87.354+0.00  8.47 +0.39
dX; = p(t, Xy)dt + o(t, X;)d B, B — U ODENet! 9890 £0.04  LI11+0.10  8830+029 871021
; oo ; e e o . | t MFVI ResNet 32 99.40 +0.00  276+128  8697+0.00  3.04+0.94
where p @ [0,T] x R* — R* (drift), o : [0, T] x R? — R™™ (diffusion) are The previous system can be described as a single SDE: MFVI! — — 86.48 1.95
: : ' ; ° ° ik ResNet32 + LL Laplace — — 92.10 2.98
Lipschitz functions in the state, and satisfy a linear growth condition. S _ _ _ Deep Ensemble’ — — 2022 270
dhe| | fn(t, e wy) it 0 p 1) HMC (“gold standard”)! 98.31 1.79 90.70 5.94
10— DDENet SDE-BRI dwy fo(t,wy; 0) go(t,w)| " MFVI ODENet! 08.81£0.00  2.63+£0.31 81594001  3.6240.40
/ | - - - - - MFVI HyperODENet' 98.77 £0.01 2.82 +1.34 80.62 £0.00 4.29 +1.10
0.8 | | o SDE-BNN 98.55 +0.09 0.63 £0.10 86.04 £0.25 9.13 +0.28
For the horizontal case, we perform the weight separation in the same PSDE-BNN - ODEFirst (ours)  99.30 -0.06 0.62 £0.08 87.84 + 0.08 4.73 +£0.07
- TIR - . PSDE-BNN - SDEFirst (ours) ~ 99.104+0.07  0.56£0.10  85.34 +0.21 3.56 + 0.15
0.6 |
£ -. layer by setting the diffusion matrix to zero, e.g.. PSDE-BNN - fix.ws (ours) 9930007 0604010 87494024 527 +0.17
S . | PSDE-BNN - Hor. Cut (ours) 9927 +0.03 0574006 8778 +037 429+ 0.37
| ol 0 | SDE-BNN (same training time) ~ 94.23 & 0.02 0.14 £ 0.02 69.94 + 0.21 1.52 + 0.23
0.2 qg (t wt) _ my M X2
. p 7 - .
Omoxmi - Omy Accuracy of PSDE-BNN vs. other Bayesian models
o 0 5 -10 -5 O 5 10
state h(t) state h(t Then, we have an extra network (same function different 9): Model Epoch Time Inference Time Model  CorruptionLvl2 Corruption LvlS
_ - _ _ _ _ - - — - - - SDE-BNN 371.9 43.7 ODEFirst 0.322 £+ 0.409 0.503 £+ 0.465
il B NN dw; Fulwy, t, o) ; gu(wy, t) 5 dhy fult, by w?, wP) 0 ODEFirst (10%)  289.4 31.7 SDEFirst ~ 0.443 £0.468  0.628 + 0.512
Nnnite ece S. — t —|— D L D. SDEFirst (10%) 295.1 31.7 Hor. Cut 0.394 4+ 0.436 0.541 4= 0.458
y P dh; fr(he, t,wy) 0 ! dth = | Jfo,(2, th 0p) | dt + 0 . dbB;. (2) Hor. Cut (50%) 316.7 35.9 SDEBNN  0.256 £0.353  0.375 = 0.405
_dwt ] i fos(t, wy; Os) i _gp(t, w )_ Training and Inference times Predictive Entropy on CIFAR-10-C
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