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Background: Neural Differential Equations

A Neural Differential Equation is a differential equation using a neural

network to parametrise the vector field.

dht
dt

= fθ(t, ht), h0 = x,

where fθ : R × Rd1×...×dk and y : [0, T ] → Rd1×...×dk is the solution.

Similarly, discrete-depth residual networks can be defined as:

ht+δ = ht + δf (ht;wt), t = 1, ..., T,

In the limit where δ = 1
T and T → ∞, we obtain a Neural ODE.

Background: (Partially Stochastic) Bayesian NNs

1. Place a prior on the weights of the network, e.g.

p(w) = N (w; 0, ηI).
2. Define an observation model, e.g. p(y|x, θ) = N (y; fθ(x), σ2).
3. Apply Bayes’ Rule:

p(θ|D) ∝ p(θ)
N∏
i=1

p(y(i)|x(i), θ)

Partial Stochasticity: Θ = ΘS ∪ ΘD

Background: SDEs as Approximate Posteriors

A d-dimensional SDE driven by a m-dimensional Brownian motion on

an interval [0, T ]:
dXt = µ(t,Xt)dt + σ(t,Xt)dBt,

where µ : [0, T ] ×Rd → Rd (drift), σ : [0, T ] ×Rd → Rd×m (diffusion) are

Lipschitz functions in the state, and satisfy a linear growth condition.

Infinitely Deep BNNs:

[
dwt
dht

]
=
[
fw(wt, t, φ)
fh(ht, t, wt)

]
dt +

[
gw(wt, t)

0

]
dBt

Methodology

Vertical Separation of the Weights

Let wt ∈ Rdw be the weights of layer t ∈ [0, 1], and t1 < t2 be cutoff

points:

For t /∈ (t1, t2), the dynamics of wt are deterministic:

dwt = fq(t, wt; θ)dt.

For t ∈ (t1, t2), wt is a random vector and we perform Bayesian

inference. We define a prior as the solution of the SDE and an

approximate posterior::

dwt = fp(t, wt)dt + gp(t, wt)dBt, dwt = fq(t, wt; θ)dt+gp(t, wt)dBt.
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Horizontal Separation of the Weights
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The previous system can be described as a single SDE:[
dht
dwt

]
=
[
fh(t, ht;wt)
fq(t, wt; θ)

]
dt +

[
0

gp(t, wt)

]
dBt. (1)

For the horizontal case, we perform the weight separation in the same

layer by setting the diffusion matrix to zero, e.g.:

gp(t, wt) =
[
σIm1 0m1×m2

0m2×m1 0m2

]
.

Then, we have an extra network (same function different θ): dhtdwD
t

dwS
t

 =

fh(t, ht;wS
t , w

D
t )

fθD(t, wD
t ; θD)

fθS(t, wS
t ; θS)

 dt +

 0
0

gp(t, wS
t )

 dBt. (2)

Training the Network

LV (Θ) = Eqθ
[
log p(D|w) − κ

∫ t2

t1

||uθ(t, wt)||2dt
]
,

where uθ(t, wt) = gp(t, wt)−1 [fp(t, wt) − fq(t, wt; Θ)].

LH(Θ) = Eqθ
[
log p(D|w) − κ

∫ t2

t1

||uSθ (t, wS
t )||2dt

]
,

with uSθ (t, wS
t ) = gp(t, wS

t )−1 [fp(t, wS
t ) − fSθ (t, wS

t ; ΘS)
]
.

As for the prior, we use an Ornstein-Uhlenbeck process:

fp(wt, t) = −wt, g(wt, t) = σId.

Theoretical Results

Theorem. Let X,Y be random variables taking values in X ⊂ Rdx,Y ⊂
Rdy respectively. Assume X is compact. Assume further that there exists a

continuous generator function f̃ : Rm×X → Y for the conditional distribu-

tion Y |X for somem ≥ dy. Consider a PSDE-BNNmodel given by (1), with

dh, dw large enough. Then, for all ε > 0, there exist A ∈ F , h0, fh, fq, gp, θ,
a linear operator L and a random variable η ∼ N (0, Im) independent ofX
such that

(i) P(A) ≥ 1 − ε,

(ii) ∀ω ∈ A, x ∈ X , ||L(ψ1(ω, x)) − f̃ (η(ω), x)|| ≤ ε.

I.e. there exists a PSDE-BNN that approximates Y |X with high probability.

Experimental Results

Accuracy of PSDE-BNN vs. other Bayesian models

Training and Inference times Predictive Entropy on CIFAR-10-C
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