

Partially Stochastic Infinitely Deep Bayesian Neural Networks

Sergio Calvo Ordoñez¹² Matthieu Meunier² Francesco Piatti³ Yuantao Shi¹²

¹Oxford-Man Institute of Quantitative Finance, University of Oxford, ²Mathematical Institute, University of Oxford,

³Department of Mathematics, Imperial College London

Background: Neural Differential Equations

A **Neural Differential Equation** is a differential equation using a neural network to parametrise the vector field.

$$\frac{dh_t}{dt} = f_\theta(t, h_t), h_0 = x,$$

where $f_\theta : \mathbb{R} \times \mathbb{R}^{d_1 \times \dots \times d_k} \rightarrow \mathbb{R}^{d_1 \times \dots \times d_k}$ and $y : [0, T] \rightarrow \mathbb{R}^{d_1 \times \dots \times d_k}$ is the solution. Similarly, discrete-depth residual networks can be defined as:

$$h_{t+\delta} = h_t + \delta f(h_t; w_t), \quad t = 1, \dots, T,$$

In the limit where $\delta = \frac{1}{T}$ and $T \rightarrow \infty$, we obtain a **Neural ODE**.

Background: (Partially Stochastic) Bayesian NNs

1. Place a prior on the weights of the network, e.g. $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}; \mathbf{0}, \eta \mathbf{I})$.
2. Define an observation model, e.g. $p(y|\mathbf{x}, \theta) = \mathcal{N}(y; f_\theta(\mathbf{x}), \sigma^2)$.
3. Apply Bayes' Rule:

$$p(\theta|\mathcal{D}) \propto p(\theta) \prod_{i=1}^N p(y^{(i)}|\mathbf{x}^{(i)}, \theta)$$

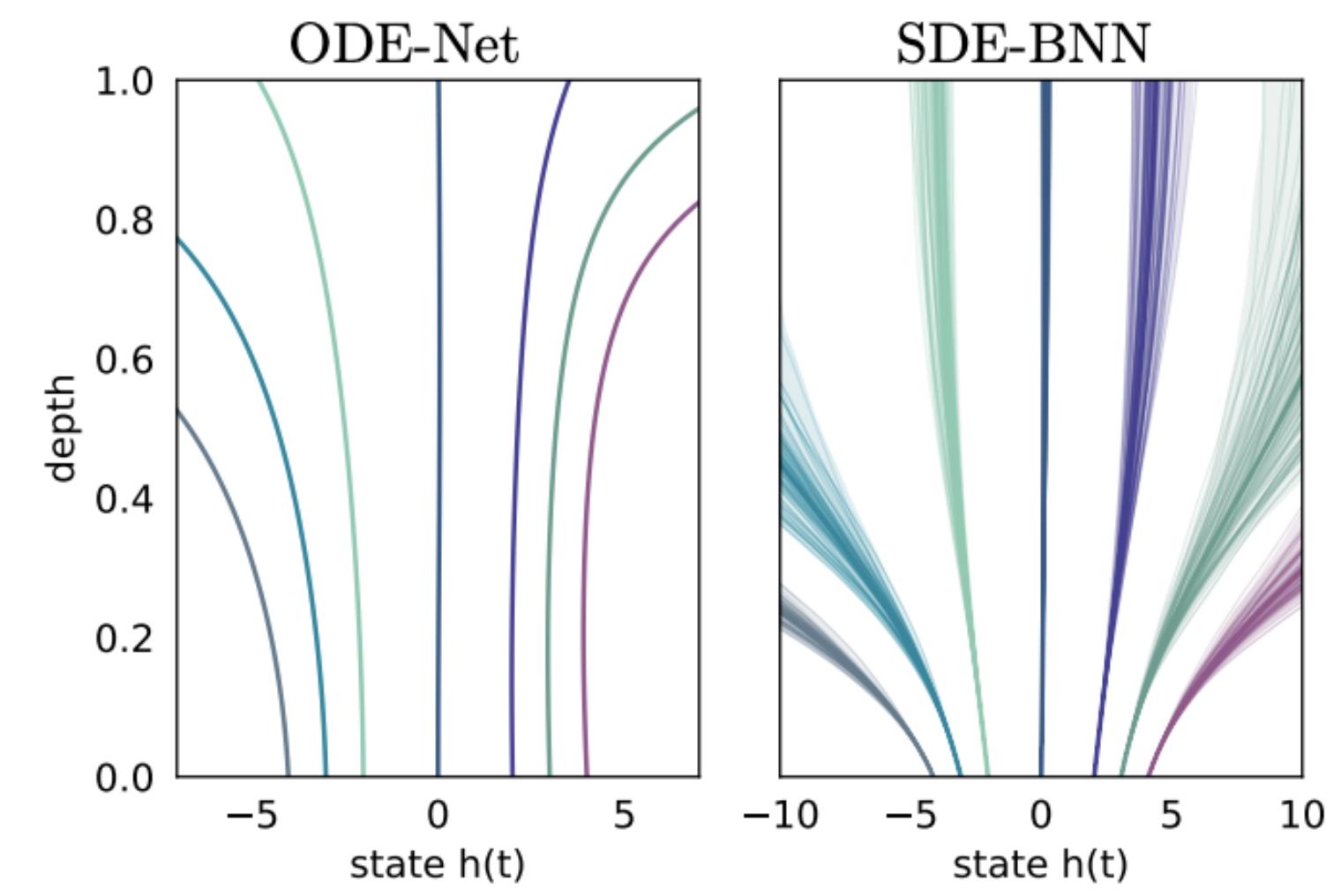
Partial Stochasticity: $\Theta = \Theta_S \cup \Theta_D$

Background: SDEs as Approximate Posteriors

A d -dimensional SDE driven by a m -dimensional Brownian motion on an interval $[0, T]$:

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dB_t,$$

where $\mu : [0, T] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ (drift), $\sigma : [0, T] \times \mathbb{R}^d \rightarrow \mathbb{R}^{d \times m}$ (diffusion) are Lipschitz functions in the state, and satisfy a linear growth condition.



Infinitely Deep BNNs: $\begin{bmatrix} dw_t \\ dh_t \end{bmatrix} = \begin{bmatrix} f_w(w_t, t, \phi) \\ f_h(h_t, t, w_t) \end{bmatrix} dt + \begin{bmatrix} g_w(w_t, t) \\ 0 \end{bmatrix} dB_t$

Methodology

Vertical Separation of the Weights

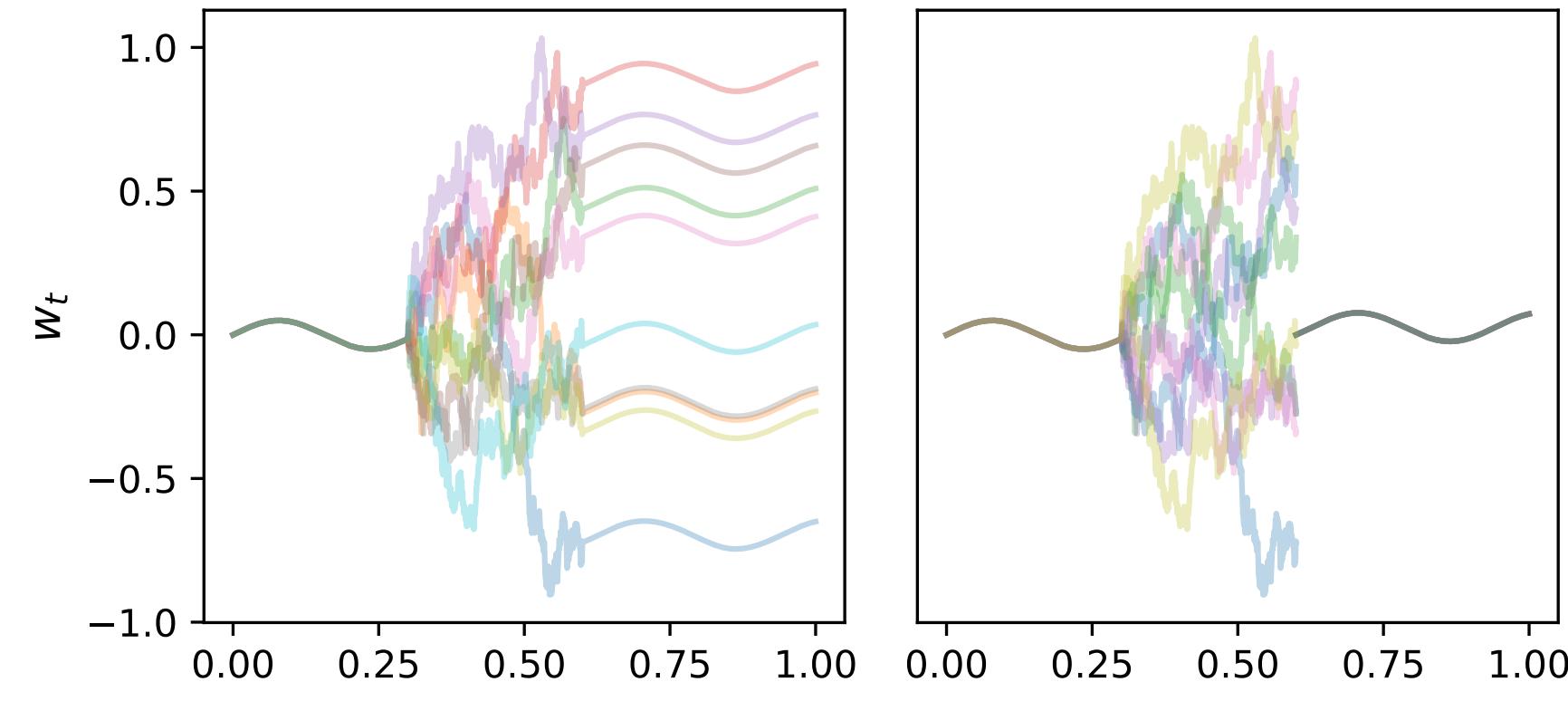
Let $w_t \in \mathbb{R}^{d_w}$ be the weights of layer $t \in [0, 1]$, and $t_1 < t_2$ be cutoff points:

- For $t \notin (t_1, t_2)$, the dynamics of w_t are deterministic:

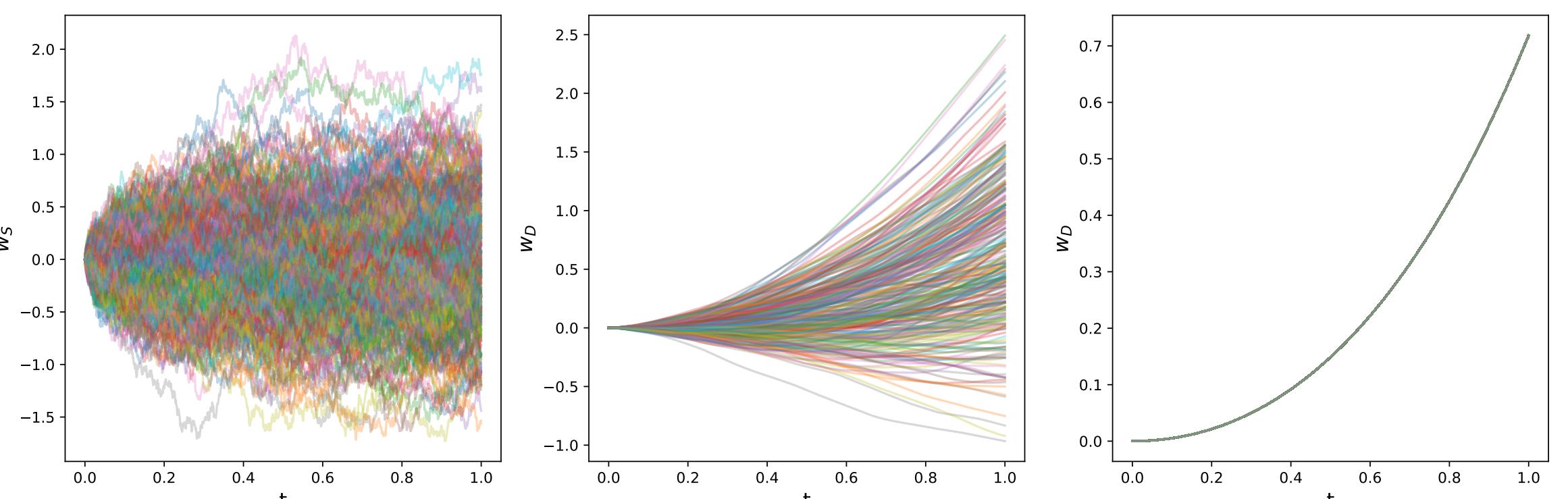
$$dw_t = f_q(t, w_t; \theta)dt.$$

- For $t \in (t_1, t_2)$, w_t is a random vector and we perform Bayesian inference. We define a prior as the solution of the SDE and an approximate posterior:

$$dw_t = f_p(t, w_t)dt + g_p(t, w_t)dB_t, \quad dw_t = f_q(t, w_t; \theta)dt + g_p(t, w_t)dB_t.$$



Horizontal Separation of the Weights



The previous system can be described as a single SDE:

$$\begin{bmatrix} dh_t \\ dw_t \end{bmatrix} = \begin{bmatrix} f_h(t, h_t; w_t) \\ f_q(t, w_t; \theta) \end{bmatrix} dt + \begin{bmatrix} 0 \\ g_p(t, w_t) \end{bmatrix} dB_t. \quad (1)$$

For the horizontal case, we perform the weight separation in the same layer by setting the diffusion matrix to zero, e.g.:

$$g_p(t, w_t) = \begin{bmatrix} \sigma \mathbf{I}_{m_1} & \mathbf{0}_{m_1 \times m_2} \\ \mathbf{0}_{m_2 \times m_1} & \mathbf{0}_{m_2} \end{bmatrix}.$$

Then, we have an extra network (same function different θ):

$$\begin{bmatrix} dh_t \\ dw_t^D \\ dw_t^S \end{bmatrix} = \begin{bmatrix} f_h(t, h_t; w_t^S, w_t^D) \\ f_{\theta_D}(t, w_t^D; \theta_D) \\ f_{\theta_S}(t, w_t^S; \theta_S) \end{bmatrix} dt + \begin{bmatrix} 0 \\ 0 \\ g_p(t, w_t^S) \end{bmatrix} dB_t. \quad (2)$$

Training the Network

$$\mathcal{L}^V(\Theta) = \mathbb{E}_{q_\theta} \left[\log p(D|w) - \kappa \int_{t_1}^{t_2} \|u_\theta(t, w_t)\|^2 dt \right],$$

where $u_\theta(t, w_t) = g_p(t, w_t)^{-1} [f_p(t, w_t) - f_q(t, w_t; \Theta)]$.

$$\mathcal{L}^H(\Theta) = \mathbb{E}_{q_\theta} \left[\log p(D|w) - \kappa \int_{t_1}^{t_2} \|u_\theta^S(t, w_t^S)\|^2 dt \right],$$

with $u_\theta^S(t, w_t^S) = g_p(t, w_t^S)^{-1} [f_p(t, w_t^S) - f_\theta^S(t, w_t^S; \Theta_S)]$.

As for the prior, we use an Ornstein-Uhlenbeck process:

$$f_p(w_t, t) = -w_t, \quad g(w_t, t) = \sigma \mathbf{I}_d.$$

Theoretical Results

Theorem. Let X, Y be random variables taking values in $\mathcal{X} \subset \mathbb{R}^{d_x}, \mathcal{Y} \subset \mathbb{R}^{d_y}$ respectively. Assume \mathcal{X} is compact. Assume further that there exists a continuous generator function $f : \mathbb{R}^m \times \mathcal{X} \rightarrow \mathcal{Y}$ for the conditional distribution $Y|X$ for some $m \geq d_y$. Consider a PSDE-BNN model given by (1), with d_h, d_w large enough. Then, for all $\varepsilon > 0$, there exist $A \in \mathcal{F}, h_0, f_h, f_q, g_p, \theta$, a linear operator \mathcal{L} and a random variable $\eta \sim \mathcal{N}(0, I_m)$ independent of X such that

- (i) $\mathbb{P}(A) \geq 1 - \varepsilon$,
- (ii) $\forall \omega \in A, x \in \mathcal{X}, \|\mathcal{L}(\psi_1(\omega, x)) - \tilde{f}(\eta(\omega), x)\| \leq \varepsilon$.

i.e. there exists a PSDE-BNN that approximates $Y|X$ with high probability.

Experimental Results

Model	MNIST		CIFAR-10	
	Accuracy (%) \uparrow	ECE ($\times 10^{-2}$) \downarrow	Accuracy (%) \uparrow	ECE ($\times 10^{-2}$) \downarrow
ResNet32 [†]	99.46 \pm 0.00	2.88 \pm 0.94	87.35 \pm 0.00	8.47 \pm 0.39
ODENet [†]	98.90 \pm 0.04	1.11 \pm 0.10	88.30 \pm 0.29	8.71 \pm 0.21
MFVI ResNet 32 [†]	99.40 \pm 0.00	2.76 \pm 1.28	86.97 \pm 0.00	3.04 \pm 0.94
MFVI [†]	—	—	86.48	1.95
ResNet32 + LL Laplace	—	—	92.10	2.98
Deep Ensemble [†]	—	—	89.22	2.79
HMC ("gold standard") [†]	98.31	1.79	90.70	5.94
MFVI ODENet [†]	98.81 \pm 0.00	2.63 \pm 0.31	81.59 \pm 0.01	3.62 \pm 0.40
MFVI HyperODENet [†]	98.77 \pm 0.01	2.82 \pm 1.34	80.62 \pm 0.00	4.29 \pm 1.10
SDE-BNN	98.55 \pm 0.09	0.63 \pm 0.10	86.04 \pm 0.25	9.13 \pm 0.28
PSDE-BNN - ODEFirst (ours)	99.30 \pm 0.06	0.62 \pm 0.08	87.84 \pm 0.08	4.73 \pm 0.07
PSDE-BNN - SDEFirst (ours)	99.10 \pm 0.07	0.56 \pm 0.10	85.34 \pm 0.21	3.56 \pm 0.15
PSDE-BNN - fix_w2 (ours)	99.30 \pm 0.07	0.60 \pm 0.10	87.49 \pm 0.24	5.27 \pm 0.17
PSDE-BNN - Hor. Cut (ours)	99.27 \pm 0.03	0.57 \pm 0.06	87.78 \pm 0.37	4.29 \pm 0.37
SDE-BNN (same training time)	94.23 \pm 0.02	0.14 \pm 0.02	69.94 \pm 0.21	1.52 \pm 0.23

Accuracy of PSDE-BNN vs. other Bayesian models

Model	Epoch Time	Inference Time
SDE-BNN	371.9	43.7
ODEFirst (10%)	289.4	31.7
SDEFirst (10%)	295.1	31.7
Hor. Cut (50%)	316.7	35.9

Training and Inference times

Model	Corruption Lvl 2	Corruption Lvl 5
ODEFirst	0.322 \pm 0.409	0.503 \pm 0.465
SDEFirst	0.443 \pm 0.468	0.628 \pm 0.512
Hor. Cut	0.394 \pm 0.436	0.541 \pm 0.458
SDEBNN	0.256 \pm 0.353	0.375 \pm 0.405

Predictive Entropy on CIFAR-10-C