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Data with Explicit Structures

 Real-world data involves observed graph structures
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protein interactions social networks circuit graphs

1) Topological and geometric patterns (non-Euclidean space) 
2) Varying scales, sizes and properties

 Characteristics of data with explict structures
code structures



Data with Implicit Structures
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data manifold geometries
[Sebastian et al., 2021]

unknown physical interactions
[Alvaro et al., 2020]

infectious disease transmission
[Brockmann et al., 2013]

 Real-world data involves unobserved graph structures

 Characteristics of data with implicit structures
1) Difficulty in inferring latent structures 
2) Scalability for large-scale systems 



Graph Learning with Distribution Shifts
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 Graph representation learning: 
find a functional map that 
converts nodes in a graph into 
embeddings in latent space

 Graph distribution shifts: difference between train and test data

Graphs from multiple domains Temporal dynamic networks Molecules with distinct drug likeness



Challenges of Distribution Shifts 

Qitian Wu et al. Learning Divergence Fields (ICML 2024) 5

 Generalization: from training data to out-of-distribution testing data
  Distribution shifts cause different data distributions
  New data from unknown distribution are unseen by training

 Latent geometry behind observed data
  Label of each instance depends on the 

instance itself and other instances
  Interdependence of data points significantly 

increases the difficulty for generalization

How to model the generalizable predictive relations from inputs of 
interdependent data with certain geometries to their labels?



Message Passing as A Diffusion Process
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Treat the feed-forward update of embeddings as a 
diffusion process of heat on manifolds

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 

 Geometric diffusion: a continuous process of neural message passing 



Diffusion Equations on Graphs
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 The diffusion process over N points driven by pairwise interactions:

gradient divergence diffusivity function

 Diffusion over discrete space of N nodes with latent structures:

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



Diffusion with Stochastic Diffusivity

Qitian Wu et al. Learning Divergence Fields (ICML 2024) 8

 Branching-structured divergence fields: the pairwise influence among 
data points could be driven by multiple criteria with uncertainty

 Diffusion trajectory: the discrete iterations induce layer-wise 
embeddings (                             )

divergence: the amount of 
updated information  

assume diffusivity to be generated from 
a probabilistic distribution



Probabilistic Formulation of Model
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 Likelihood of observed data for model training:

as a delta distribution  

 One step of model feedforward induces a predictive distribution:

diffusivity is a latent 
confounder of x and y



Key idea: replace                      with

Deconfounded Learning/Causal Intervention
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 Potential solution: cutting off the dependence between x and y 

 Harmful effect: the confounding bias of latent diffusivity

• d establishes a shortcut (spurious correlation) between x and y
• Model training tends to exploit spurious correlation in training data
• Spurious correlation does not universally hold across environments  

• According to Backdoor Adjustment in causal inference [Pearl et al., 2016]:

diffusivity is unobservable 
in real-world data sets



Deconfounded Learning/Causal Intervention
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Theorem 1 (Variational Lower Bound of Causal Deconfounded Learning) 
For any given diffusion model                                      , we have a lower bound of the deconfounded 
learning objective, i.e., 

In particular, the equality holds if and only if                                                                                      .

a re-weighting term 
penalize frequent 

diffusivity components

Proof Sketch (see Appendix A in the papers):

• Backdoor adjustment

• Variation lower bound



Proposed Learning Objective
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estimate diffusivity at 
each layer

predict labels from 
inputs and estimated 

diffusivity

prior for 
diffusivity

 Learning objective: tractable lower bound of deconfounded learning

deconfounded 
causal learning

approximated 
learning scheme



Model Instantiation: Diffusivity Estimation
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 Latent diffusivity: assume diffusivity as samples from a set of 
hypothesis according to a multinomial distribution

a one-hot vector from 
a multinomial dist.

from a set of K diffusivity 
hypothesis

 Use Gumbel-Softmax to handle the non-differentiability of sampling:

 Data-driven prior via mixture of posterior [Tomczak & Welling, 2018]:

embeddings of instances in the generated pseudo 
dataset                    from a random graph model



Model Instantiation: Feedforward Propagation
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 Propagation layers: assume diffusivity as different forms
• GLIND-GCN: Diffusivity as constant coupling matrix (graph adjacency)

• GLIND-GAT: Diffusivity as time-dependent coupling matrix (graph attention)

• GLIND-Trans: Diffusivity as time-dependent coupling matrix (all-pair attention)

How to efficiently compute all-pair attention? DIFFormer [Wu et al., 2023] 

assume

only require         
for updating N 
instances 



  Split data into in-distribution 
and out-of-distribution portions; 
for IND data, randomly split into 
IND-Tr/IND-Val/IND-Te 

Experiment Protocols
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  For temporal graph dataset: 
use time information for data 
split of IND and OOD

  For multi-graph dataset: use 
domain information for data 
split of IND and OOD 

Qitian Wu, et al., Handling Distribution Shifts on 
Graphs: An Invariance Perspective, ICLR 2022  
Qitian Wu, et al., Energy-based Out-of-Distribution 
Detection for Graph Neural Networks, ICLR 2023 



Experiment Results

Qitian Wu et al. 16Learning Divergence Fields (ICML 2024)

Testing results (Accuracy for Arxiv, ROC-AUC for Twitch) on real-world datasets 



Experiment Results
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Testing RMSE for protein interaction dataset on different domains

  DDPIN (dynamic protein interaction dataset) contains multiple dynamic graphs
  Each dynamic graph is from a protein identification method
  Each node has a scalar-valued signal evolving with time and affecting the graph 

structure (co-expressed levels between proteins)



Experiment Results
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Testing Accuracy (%) for CIFAR and STL on different domains

  Each instance is an image/text without observed interdependent structures
  Use k-nearest-neighbor to create a synthetic graph structure among instances
  Use different values of k and similarity functions (added with rotation angles) to 

introduce distribution shifts between training and test data



Conclusion
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Qitian Wu, et al., Handling Distribution Shifts on Graphs: An Invariance Perspective, ICLR 2022  
Qitian Wu, et al., Energy-based Out-of-Distribution Detection for Graph Neural Networks, ICLR 2023 

We explore a geometric diffusion framework empowered by causal learning for 
shift-robust graph representations (out-of-distribution generalization)

Qitian Wu, et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 


