Learning Divergence Fields for Shift-Robust
Graph Representations

—

International Conference on Machine Learning (ICML), 2024

Qitian Wu, Fan Nie, Chenxiao Yang, Junchi Yan
Shanghai Jiao Tong University

Paper: https://arxiv.org/pdf/2406.04963
Code: https://github.com/fannie1208/GLIND



Data with Explicit Structures

0 Real-world data involves observed graph structures

protein interactions social networks circuit graphs code structures
01 Characteristics of data with explict structures

1) Topological and geometric patterns (non-Euclidean space)
2) Varying scales, sizes and properties
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Data with Implicit Structures

a Real-world data involves unobserved graph structures
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data manifold geometries unknown physical interactions infectious disease transmission
[Sebastian et al., 2021] [Alvaro et al., 2020] [Brockmann et al., 2013]

a Characteristics of data with implicit structures

1) Difficulty in inferring latent structures
2) Scalability for large-scale systems
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Graph Learning with Distribution Shifts

Qa Graph representation learning:
find a functional map that
converts nodes in a graph into
embeddings in latent space

Input graph 2D node embeddings

Q Graph distribution shifts: difference between train and test data
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Graphs from multjple domains Temporal dynamic networks  Molecules with distinct drug likeness
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Challenges of Distribution Shifts

a Generalization: from training data to out-of-distribution testing data

- Distribution shifts cause different data distributions Pirqin (D) 7# Piest(D)
= New data from unknown distribution are unseen by training

Training Data Testmg Data

a Latent geometry behind observed data

= Label of each instance depends on the {:}{:} =>

Instance itself and other instances

S
» Interdependence of data points significantly [ /7
Increases the difficulty for generalization

How to model the generalizable predictive relations from inputs of
Interdependent data with certain geometries to their labels?
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Message Passing as A Diffusion Process

a Geometric diffusion: a continuous process of neural message passing
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e ,f : L . L ) —()> embedding update

the feed-forward update of embedding ¢
diffusion process of heat on manifolds

O heat flux

O---0O signal flow

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023
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Diffusion Equations on Graphs

 The diffusion process over N points driven by pairwise interactions:

azg;, D v (D) & Ve ), 2(1,0) = zo(u).t > 0,1 € O
- i :>_<: """"""""" ¥ 2 """"
E o—0 .g::f_____:}
gradient divergence diffusivity function
(VZ()uo = 2u(t) = 2,(t)  (V9u= D du(Z(1),u,t) (VZ(1),, d(Z(t),u,t)
e v
1 Diffusion over discrete space of N nodes with latent structures:
8zu
= > do(Z(t), u,t) (2o(t) — 2u(t),  Z(0) = [xulh_y,t >0
V,0yo=1

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023
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Diffusion with Stochastic Diffusivity

 Branching-structured divergence fields: the pairwise influence among
data points could be driven by multiple criteria with uncertainty

0[S )] = a0

aa/uvzl
divergence: the amount of assume diffusivity to be generated from
updated information a probabilistic distribution

1 Diffusion trajectory: thalc)lisc(r}ete iterations induce layer-wise
0z, (t) zZy
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embeddings (

V,Ayp=1

A, = dD ~ p(d®z) P
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Probabilistic Formulation of Model

as a delta distribution

20+D — 50 4 o Z 40 . ( (z>> — pg(z(l“)\z(l),d(l),g)

VAo =1

)12y = dy) ~ p(dV]zi))

[ One step of model feedforward induces a predictive distribution:
po(z V|2, G) = Epam|zm) pe (2|2, dY G)]

4 Likelihood of observed data for model training:

log po(y|x,G) = log H po(z V2, G)

L 1 [ ] u u
= 3" 108 B quo i) [po (27020, dD, 9)] diffusivity is a latent
o confounder of x and y
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Deconfounded Learning/Causal Intervention

 Harmful effect: the confounding bias of latent diffusivity

- d establishes a shortcut (spurious correlation) between x and y

- Model training tends to exploit spurious correlation in training data

- Spurious correlation does not universally hold across environments

 Potential solution: cutting off the dependence between x and y

[ Key idea: replace pg(y|x,G) with pg(y\do(x),g)]

- According to Backdoor Adjustment in causal inference [Pearl et al., 2016]:

po(yldo(x),G) = ZPG(Y"Q d,G)py(d) |diffusivity is unobservable
d In real-world data sets
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Deconfounded Learning/Causal Intervention

Theorem 1 (Variational Lower Bound of Causal Deconfounded Learning)

For any given diffusion model py(z'*V|z"), dV, G), we have a lower bound of the deconfounded
learning objective, i.e.,

L—-1

0
A+1)(, 1) (D) po(d™)
logpe(YIdO(X),g)Z;E%(dﬂnz(”) llogPH(Z z.d ’Q{Q¢(d<l>z(l)

penalize frequent
diffusivity compagnents

a re-weighting term
)]

po(d(l))
(d(l) \Z(l)) .

In particular, the equality holds if and only if ¢,(d"|zV) = pg(dV|2z!), 20TV G) . ,

Proof Sketch (see Appendix A in the papers):

. Backdoor adjustment  po(y[do(x),G) = > pelylx,d@, - dETY G)p(d @, dET)
d©) ... d(L—1)
. . L—2 po(d(l))
- Variation lower bound ) E, awp.0) |log ) pe(z<l+1>\z<l>,d<l>,g).%(d(l)‘z(l))
=0 Zz(1+1)

d(Z-1)
+Eq¢(d(L—1)|z(L—1)) [logpe(z(L)\z(L—1)7d(L—l)’g) ol ) ] |

4o (A=D1
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Proposed Learning Objective

 Learning objective: tractable lower bound of deconfounded learning

prior for
diffusivity

L—1
IE‘Zlqd,(d(o)|z(0)),... ,qd)(d(L—l)lz(L—l)) [logpe (y|X, d(o), R d(L_l), g)} — Z KL(ng(d(l) |Z(l)),p0(d(l)))
estimate diffusivity at predict labels from =0
each layer inputs and estimated
diffusivity
po(zV|z0, 40 g)

deconfounded approximated T D I D

causal learning learning scheme

q¢(d(0}|z{m) ng(d(1}|z{1))
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supervised loss
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regularization loss
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Model Instantiation: Diffusivity Estimation

J Latent diffusivity: assume diffusivity as samples from a set of
hypothesis according to a multinomial distribution

Zg+1) (l) JrZ:h(l) Z (lk (l) _Zg)) NM(ﬂ'g))

V,0q

from a set of K diffusivity a one-hot vector from
hypothesis {d{lFVE a multinomial dist.

d Use Gumbel-Softmax to handle the non-differentiability of sampling:

oo (o 1)
) _ (1,k)
h,” = , , gk ~ Gumbel(0,1) (70, ]
u,k k) u
2k exp((mu™ " +gw)/7)

 Data-driven prior via mixture of posterior [Tomczak & Welling, 2018]:

d(l) Z q d(l)‘z(l) ) embeddings of instances in the generated pseudo
dataset {%;, §j; }._, from a random graph model

K =zl = Softmax(W(If)zfp)
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Model Instantiation: Feedforward Propagation

J Propagation layers: assume diffusivity as different forms

- GLIND-GCN: Diffusivity as constant coupling matrix (graph adjacency)
K
Zg+1) :Zg) 4 A0 W(l k) (z)+w(l ) (z)>
I;I h (U,cgl d

- GLIND-GAT: Diffusivity as time-dependent coupling matrix (graph attention)

S((MI) T Wiz Wz )

K
Zgﬂ) _ zgf) + Z hg)k (
k=1

Z w(l k)W(l k) (l)+W(l k) (l)) &lvk:) _

VAo =1

I,k) (1 Lk) (1
> wan =1 8T WP 20 WP 207)

- GLIND-Trans: Diffusivity as time-dependent coupling matrix (all-pair attention)

b{-F)

23

Lk) (1 1k)+ (1
n(WiePz, Wt k)

(1)

K
l I,k I,k
s =)+ 37 hl (Wi i + wia () S (W
— v w=1

How to efficiently compute all-pair attention? DIFFormer [Wu et al., 2023]

Soliz + (0L k)E)T) (@)

a + b LR _

assume n(a,b) =1+ (

o/
L,k) (1 L,k l v
WPl Wi kD)

Uu l N l
BB N+ (@7, k)
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Experiment Protocols

Q Split data into in-distribution

In-distribution (IND) data

/

|

e

and out-of-distribution portions;

IND-Tr

IND-Val

IND-Te

for IND data, randomly split into
IND-Tr/IND-Val/IND-Te

Q For temporal graph dataset:
use time information for data
split of IND and OOD

0 For multi-graph dataset: use  n N

domain information for data
split of IND and OOD

Qitian Wu, et al., Handling Distribution Shifts on
Graphs: An Invariance Perspective, ICLR 2022

Qitian Wu, et al., Energy-based Out-of-Distribution
Detection for Graph Neural Networks, ICLR 2023
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out-of-distribution (OOD) data

OOD-Te

/

evaluation

15



Experiment Results

Testing results (Accuracy for Arx/v, ROC-AUC for Twitch) on real-world datasets

Method Arxiv Twitch
o 2014-2016 2016-2018 2018-2020 ES FR EN
ERM-GCN 56.33 £ 0.17 5353+ 044 4583 £ 047 | 66.07T=0.14 5262 +£0.01 -
IRM-GCN 5592 £ 0.24 5325+ 049 45.66 £ (L83 52531002 6291 £ 0.08
GroupDRO-GCN 56.52 +0.27 53.40 £+ 0.29 45.76 + .59 66.82 + 0.26 ; - 62,95+ 0.11
DANN-GCN - - 66.150.13 52661002 6320 L 0.06
Mixup-GCN 56.67 = 0.46 2402 = 0.51 46.09 + (.58 65.76 = 0.30 2278 = 0.04
EERMEeN. | e e R | 67.50 £ 0.74 __ 5188 +0.07 __62.56 £ 002
i GLIND-GCN 59.42 4+ 0.33 ah.84 + (.54 27.06 + 1.21 67.72 = 0.10 53.16 + 0.08 64.18 £ 0.03 |
ERM-GAT 5715+ 025 55.07 £+ 0.58 46.22 £+ 0.82 65.67 = 0.02 52.00 £ 0.10 61.85 + 0.05
IRM-GAT 56.55 £ 0.18 5453 £0.32  46.01 £0.33 5285 £0.15 -
GroupDRO-GAT 56.69 + 0.27 54.51 £ 0.49 46.00 + 0.539 67.41 = 0.04 2299 + (.05 62.29 + 0.03
DANN-GAT 57.23 £ 0.18 66.59 £ (.38 62.47 + 0.32
Mixup-GAT 5533 + 0.37 47.17 + (.54 6558 = 0.13 52.04 +£0.04 61.75 +0.13
JEERM-GAT | - A B 0680 £ 046 5239 £020 62.07 £ 0.68
{ GLIND-GAT 60.36 £+ 0.36 58.98 £+ 0.43 5971 +£0.53 | 6782010 5450+0.12 64321012 |
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Experiment Results

Testing RMSE for protein interaction dalaset on different domains

Method Hazbun Krogan (LCMS) Krogan (MALDI) Lambert Tarassov Uetz Yu

ERM-Trans 1.82 £ 0.17 1.63 4+ 0.04 1.57 4+ 0.03 1.49 £ 0.07 .62 + 0.03

IEM-Trans 1.66 4+ 0.14 .86 4 0.04 1.84 4 (.04 1.52 £ 0.07 1.76 £+ 0.03 .66 4+ 0.05 .66 4+ 0.04

DANN-Trans 1.69 4 0.11 1.39 £ 0,05 1.49 + 0.01 1.50 4+ 0.01

GroupDRO-Trans .68 4+ 0.02 1.65 4+ 0.02 1.48 £ 0.03 1.72 £+ 0.01 1.53 £ 0.04 1.53 4+ 0.01

Mixup-Trans 1.46 4+ 0.13 1.79 4+ 0.05 1.76 4 0.04 1.50 £ 0.06 1.70 £ 0.05 1.56 + 0.06 1.50 4+ 0.06
~--EERM.Trans - I 191 023 _____ L2000 LT 00s ] L7011 167007 __1.65-+£ 008
:\ GLIND-TRANS 1.02 -+ 0.07 1.38 & 0.07 1.33 4 0.05 1.08 £ 0.04 1.40 £ 0.04 1.20 £+ 0.04 1.20 4 l:l.{ldj

Q DDPIN (dynamic protein interaction dataset) contains multiple dynamic graphs
Q Each dynamic graph is from a protein identification method

QO Each node has a scalar-valued signal evolving with time and affecting the graph
structure (co-expressed levels between proteins)

Qitian Wu et al. Learning Divergence Fields (ICML 2024) 17



Experiment Results

Testing Accuracy (%) for CIFAR and STL on different domains

CIFAR STL
jmiae 150" L60¥ 170" k=8 k=9 k=10
ERM-Trans 76.88 + 0.11 TISL 025 76351+ 0.28 76.53 £ 0.25 TL10 065 7790022
IRM-Trans 76.53 + 0.03 111 005 7642 £0.31 7695+ 014 7749+025 T78.02+0.35
GroupDRO-Trans | 76.94 + (.65 1699 = (.31 1637 = (.53 78.01 £ 054 78.10 £ 0.27
DANN-Trans 76.91 £ 0.17 113037 76.61 = 0.30 77.64 =0.13 78.29 + 0.54
Mixup-Trans 77176 £ 0.30 78.73 £ 0.76
~-EERM:-Trans __ | 79.68 051 7989 = 032 V882 054 | 7792+ 093 78.58 - 0.20 818+ 038
| GLIND-TRANS $0.72 + 0.39  B1.06 = 0.32 80.24 = 0,38 | T8.06 046 7RIV 028 US4l £ 0.57 _i

QO Each instance is an image/text without observed interdependent structures
0 Use k-nearest-neighbor to create a synthetic graph structure among instances

QO Use different values of k and similarity functions (added with rotation angles) to
Introduce distribution shifts between training and test data
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Conclusion

We explore a geometric diffusion framework empowered by causal learning for
shift-robust graph representations (out-of-distribution generalization)

e Fﬂ{sﬂ-r“limrdm: G

g L d

i

5 b Gl
[!c-::;:m!’nuud V ,V B g‘y
i L ] [ ] L] & i
N ascu il Bt
6 . i plsen s e " suparvised loss
. ' '...- o =T = 3
(a) Data generation {b) Model deconfounded learning ) b -"""'--.______:_;. E,[log ps(y|%, G))]
- : PR
-
-ﬂ'l ‘lrm L—1
T_ED:L. L:ij:l_, > KL{gg(a™|a"), pe(a™))
F-0
w[ﬂf"]lsm} q,g.[dmlsm} requiarization loss
{¢) Diffusion dynamics with inference for diffusivity {d) Proposed model and learning objective

Qitian Wu, et al., Handling Distribution Shifts on Graphs: An Invariance Perspective, ICLR 2022
Qitian Wu, et al., Energy-based Out-of-Distribution Detection for Graph Neural Networks, ICLR 2023
Qitian Wu, et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023
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