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Background

▶ Deep Gaussian Processes (DGPs):
▶ Extend Gaussian Processes to multiple layers to capture

hierarchical structures (Damianou & Lawrence, 2013) [1].
▶ Crucial aspect: Selection of inducing variables.
▶ Reduce computational burden.

▶ Variational Inference Methods:
▶ Aim to approximate the true posterior distribution by

minimizing KL divergence.
▶ Traditional methods include Mean-field Gaussian Variational

Inference (DSVI) (Salimbeni & Deisenroth, 2017) [3] and
Implicit Posterior Variational Inference (IPVI) (Yu et al., 2019)
[6].

▶ Limitations of Traditional Methods:
▶ DSVI: Simplifying assumptions fail to capture complex

dependencies.
▶ IPVI: Adversarial learning leads to instability and significant

bias.



Proposed Method: DDVI

▶ Inspired by denoising diffusion models.

▶ Utilizes denoising diffusion SDE and principles similar to score
matching.

▶ Incorporates the mathematical theory of SDEs and the bridge
process trick.

▶ Derives a variational lower bound for the marginal likelihood
function.



Contributions

▶ Novel parameterization approach for the posterior distribution
of inducing points in DGPs.

▶ Guarantees model efficiency and facilitates optimization and
training.

▶ Empirically demonstrate effectiveness through extensive
experiments and comparisons with baseline methods.



Gaussian Process

Consider a random function f : RD → R that maps N training
inputs X ≜ {xn}Nn=1 to a set of noisy observed outputs
y ≜ {yn}Nn=1. A zero mean Gaussian Process (GP) prior is assumed
for the function, f ∼ GP(0, k), where k denotes the covariance
kernel function k : RD × RD → R.

p(f) = N (f|0,KXX) (1)



Sparse Gaussian Processes

Sparse methods (M. K. Titsias, 2009) [5] introduce inducing points
Z = {zm}Mm=1 from the input space, along with corresponding
inducing variables: u = {f (zm)}Mm=1. These methods reduce the
computational complexity to O(NM2).

p(f|u) = N (f|KXZK
−1
ZZu,KXX −KXZK

−1
ZZKZX) (2)

and p (u) = N (u|0,KZZ) is the prior over the outputs of the
inducing points.



Deep Gaussian Processes

Deep Gaussian Processes are hierarchical models composed by
stacking multiple-output Sparse Gaussian Processes (SGPs). Each
layer consists of independent random functions, where the output
of one layer serves as input to the next. Specifically, the output Fℓ

of layer ℓ is defined as:

Fℓ = {fℓ,1(Fℓ−1), · · · , fℓ,Dℓ
(Fℓ−1)}, (3)

with fℓ,d ∼ GP(0, kℓ) being Gaussian processes, and F0 = X.
Inducing points and variables for each layer are denoted as Z and
U :

U = {Uℓ}Lℓ=1, Uℓ = {fℓ,1(Zℓ), · · · , fℓ,Dℓ
(Zℓ)}. (4)

The joint density model is given by:

p(y,F,U) = p(y|FL)
L∏

ℓ=1

p(Fℓ|Fℓ−1,Uℓ)p(U). (5)



Parameterizing Inducing Point Posteriors

Let H = D ×M × L denote the dimension of the inducing points.
We aim to sample from the true posterior distribution q(U) in RH ,
q(U) = p(U|y). We start by sampling from a fixed distribution pfix
and then follow a Markov process in which we consider a
sequential latent variable model with a joint distribution denoted
as Q (U0, . . . ,UT ), for step ts ∈ {0, ..,T − 1},

Uts+1 ∼ T (Uts+1 | Uts ) , U0 ∼ pfix (6)



Time-reversal Representation of Diffusion SDE

We constrain the Markov process Q (U0, . . . ,UT ) to be a
time-reversal process of the following forward noising diffusion
stochastic differential equation (SDE),

d
−→
U t = h(t,

−→
U t)dt + g(t)dBt , (7)

−→
U 0 ∼ q complicating direct sampling (8)

The time-reversal representation of Eq. (7) satisfies,

d
←−
U t = g(T − t)2∇ ln

(
pT−t(

←−
U t)

)
dt − h(T − t,

←−
U t) dt

+g(T − t) dWt
←−
U 0 ∼ pT ≈ pfix = N (0, σ2I ) (9)



Score Matching Technique

The Score Matching Technique in diffusion-based generative
modeling approximates intractable score functions to simulate the
target distribution q. This is done by parameterizing the score
function sϕ(t, ·) with neural networks and minimizing the
Kullback-Leibler divergence KL(P||Pϕ). Unlike traditional score
matching, which samples from p0, here p0 is the posterior q,
complicating direct sampling. Instead, the approach minimizes
KL(Pϕ||P), equivalent to KL(Qϕ||Q), using samples from Qϕ

t . A

key challenge is accurately computing ∇ ln
(
pT−t(

←−
Uϕ

t )
)
due to the

nonlinear drift function in the stochastic differential equation.
Therefore, we need to introduce the Bridge Process Trick to
compute this KL divergence.



Bridge Process Trick
KL Divergence Decomposition:

KL(Pϕ∥P) = EPϕ log
dPϕ

dP
= EPϕ log

dPϕ

dPBri
+ EPϕ log

dPBri

dP
(10)

Bridge Process Definition: The bridge process PBri follows a
specific diffusion formula:

d
−→
UBri

t = h(t,
−→
UBri

t )dt + g(t)dBt , (11)

initialized at
−→
UBri

0 ∼ pfix. The drift term h(t, ·) is typically affine:

h(x , t) = −λ(t)x , then the transition kernel pt(
−→
UBri

t .|
−→
UBri

0 ) is
Gaussian N (lt ,Σt) (Sarkka & Solin, 2019) [4], where the mean lt
and variance Σt evolve according to:

dlt
dt

= −λ(t)lt , l0 = 0 (12)

dΣt

dt
= −2λ(t)Σt + g(t)2I , Σ0 = σ2I . (13)



Distribution of Bridge Process:

pBri
t (
−→
UBri

t ) = N (
−→
UBri

t |0, κt I ) (14)

where κt ≜
(∫ t

0 g(r)2e
∫ r
0 λ(s)dsdr + σ2

)
e−

∫ t
0 λ(s)ds .

Reverse Process and SDE:

d
←−
UBri

t =g(T − t)2∇ ln
(
pBri
T−t

(←−
UBri

t

))
dt − h(T − t,

←−
UBri

t )dt

+ g(T − t)dWt ,
(15)

initialized at
←−
UBri

0 ∼ pBri
T .

Gradient of Log-Likelihood:

∇ ln
(
pBri
T−t

(←−
UBri

t

))
= −
←−
UBri

t

κT−t
. (16)



For the first term in Eq. 10, according to Girsanov Theorem
(Oksendal, 2013) [2], we have

EPϕ log
dPϕ

dPBri
= KL

(
pfix∥pBri

T

)
+KL(Qϕ(·|

←−
Uϕ

0 )||Q(·|
←−
UBri

0 )) (17)

where

KL(Qϕ(·|
←−
Uϕ

0 )||Q(·|
←−
UBri

0 ))

=
1

2

∫ T

0
EQϕ g(T − t)2

∥∥∥ ←−Uϕ
t

κT−t
+ sϕ(T − t,

←−
Uϕ

t )
∥∥∥2
2
dt

(18)



For the second term, since P and PBri have the same dynamic
system τ except for different initial values, we have

EPϕ log
dPBri

dP
= EPϕ log

PBri (τ |·) pBri
0 (·)

P (τ |·) p0 (·)

= EQϕ
T
log

pBri
0 (·)
p0 (·)

(19)

= EQϕ
T
log

pfix
q

= EQϕ
T
log

pfix
p(y|·)p(·)

+ log p(y)



A New Evidence Lower Bound

We define l1(ϕ) = EPϕ log dPϕ

dPBri . Then, we obtain the following
variational lower bound l(ϕ):

log p(y) = KL(Pϕ∥P)− l1(ϕ)− EQϕ
T
log

pfix
p(y|·)p(·)

= KL(Pϕ∥P)− l1(ϕ)− EQϕ
T
log pfix

+ EQϕ
T
log p(·) + EQϕ

T ,F1,...,FL
log p(y|FL)

⩾ EQϕ
T
log p(·) + EQϕ

T ,F1,...,FL
log p(y|FL)− l1(ϕ)

− EQϕ
T
log pfix

= l(ϕ).

(20)



Input: training data X, y mini-batch size B
Initialize diffusion coefficient h, g , all DGP hyperparameters γ
repeat

for ts = 0 to T − 1 do
Draw ϵts ∼ N (0, I ) and set Uts+1 =
Uts − h(Uts ,T − ts) + g(T − ts)

2sϕ (T − ts ,Uts ) + g(T − t)ϵts
Compute κT−(ts+1) by Eq. (14) and set

lts+1 = lts + g(T − (ts +1))2∥ Uts+1

κT−(ts+1)
+ sϕ(T − (ts +1),Uts+1)∥22

end for
Sample mini-batch indices I ⊂ {1, . . . ,N} with |I | = B and set
{Uℓ,1, ...,Uℓ,D}Lℓ=1 = UT

for ℓ = 1 to L do
Draw ϵℓ,d ∼ N (0, I ) and calculate Fℓ,d =

KFℓ−1Zℓ
K−1

ZℓZℓ
Uℓ,d +

√
KFℓ−1Fℓ−1

−KFℓ−1zℓK
−1
ZℓZℓ

KZℓFℓ−1
ϵℓ,d

end for
Set l(ϕ, γ) = − log pfix (UT ) + log p (UT ) +

N
B log p (yI | FL)−

KL (pfix ∥ N (0, κT ))− 1
2 lT

Make a gradient descent update of l(ϕ, γ)
until ϕ, γ converge



Experiments

Regression test RMSE. Regression test mean NLL.



Image Dataset Classification Large-Scale Dataset Classifi-
cation.

Unsupervised Learning for
Data Recovery Task
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Questions

Thank you!
Questions?


