Minimizing *f*-Divergences by Interpolating Velocity Fields

Song Liu¹ (song.liu@bristol.ac.uk), Jiahao Yu¹, Jack Simons¹, Mingxuan Yi¹, Mark Beaumont¹ ¹School of Mathematics, University of Bristol, UK

Motivations

- $-$ Definition: $D_f[p,q] := \int q(\boldsymbol{x}) f(\boldsymbol{x}) d\boldsymbol{x}$ $\int p(x)$ *q*(*x*) \setminus d*x*
- $-$ Examples: Forward KL, Backward KL, Pearson's χ^2 , and Neyman's χ^2 ...
- •How to minimize these divergences by moving *q*'s particles in sample space (\mathbb{R}^d)?
- Particle movement is governed by velocity field.

We show that velocity field induced by the Wasserstein Gradient Flow can be effectively estimated via interpolation techniques.

• Wasserstein Gradient Flow (WGF) of a functional objective $\mathcal{F}(q_t)$ is a curve in a probability space $\mathcal{P}(\mathbb{R}^d)$ $q_t: \mathbb{R}^+ \rightarrow \mathcal{P}(\mathbb{R}^d).$

• Let $\mathcal{F}(q_t)$ be the *f*-divergence $D_f[p,q_t]$, WGF q_t induces the following particle moving ODE (Yi et al., 2023, Gao et al., 2019, Ansari 2021):

 $dx_t = \nabla(h \circ r_t)(x_t)dt.$ $\mathbf{v} = \mathbf{v} = \int_{0}^{T} (r_t) \, dt \, d\mathbf{r} = \int_{0}^{T} (r_t) \, dt \, d\mathbf{r} = \int_{0}^{T} (r_t) \, dt$ *qt* .

In plain words, moving particles *x^t* according to the velocity field $\nabla(h \circ r_t)(x_t)$ reduces $D_f[p,q_t]$ over time t .

- In practice, we move particles by the Euler discretization of the above ODE:
- $-$ Draw particles \boldsymbol{x}_0 from an initial distribution q_0

 $-$ For time $t = 0, 1...T$:

 $\boldsymbol{x}_{t+1} := \boldsymbol{x}_t + \eta \nabla (h \circ r_t)(\boldsymbol{x}_t)$

where η is a small step size.

2. Wasserstein Gradient Flow

- How to compute the velocity field $\nabla (h \circ r_t)(\boldsymbol{x}^\star)$?
- For backward KL, $h \circ r_t = \log r_t.$
- We do not know *r^t* .
- Nadaraya-Watson (NW) Interpolation:
- Many tasks can be formulated as minimizing statistical discrepancies between a particle distribution *q* and a target distribution *p*:
- Variational Inference, Generative Modeling …
- *f*-divergences are common choices of such statistical discrepancies:
- $-$ Observe $g(\boldsymbol{x})$ at $\{\boldsymbol{x}_i\}_{i=1}^n \sim q$, NW interpolates $g(\boldsymbol{x}^\star)$ by computing:

 $\hat{g}(\boldsymbol{x}^\star) := \widehat{\mathbb{E}}_q [k_\sigma(\boldsymbol{x}, \boldsymbol{x}^\star) g(\boldsymbol{x})] / \widehat{\mathbb{E}}_q [k_\sigma(\boldsymbol{x}, \boldsymbol{x}^\star)].$

 $\mathbb{E}_{q_t}[k^\star_{\sigma} \nabla \log r_t(\boldsymbol{x})] = \mathbb{E}_{q_t}[k^\star_{\sigma} \nabla \log p(\boldsymbol{x}) + \nabla k^\star_{\sigma}$ *σ*]*.*

Local linear (LL) regression for gradient est.: Approximate function g at \boldsymbol{x}^\star by a linear model:

 $\hat{g}(\boldsymbol{x}) := \langle \boldsymbol{\beta}(\boldsymbol{x}^\star), \boldsymbol{x} \rangle + \beta_0(\boldsymbol{x}^\star).$

 $\boldsymbol{\beta}(\boldsymbol{x}^\star)$ ϕ \approx $\nabla g(\boldsymbol{x}^{\star})$ as the gradient of a function is the "slope" of its best local linear fit.

3. Velocity Field Estimation by Interpolation

sup *x∈X* $\|\nabla^2(h \circ r)(\boldsymbol{x})\| \leq \kappa.$

of *ψ ′′* //
con•

Theorem 5.3. Suppose Assumption 5.1 and 5.2 holds and other mild assumptions on the kernel *k^σ* hold, if there exist strictly positive constants $W, B, \Lambda_{\text{min}}$ such that,

 $||\nabla(h \circ r)(\boldsymbol{x}^{\star})|| \leq W, \quad |b^*| \leq B$

• NW interpolation of the backward KL field is

 $\hat{\bm{u}}_t(\bm{x}^{\star}):=\widehat{\mathbb{E}}_{q_t}[k_{\sigma}(\bm{x},\bm{x}^{\star})\nabla \log r_t(\bm{x})]/\widehat{\mathbb{E}}_{q_t}[k(\bm{x},\bm{x}^{\star})],$

- not tractable as we do not know *r^t* .
- $-$ What if we know the target $p(x)$? e.g., Bayesian inference
- Due to integration by parts,

Supported by EPSRC CDT in Computational Statistics and Data Science, Alumni and Friends.

Estimation Consistency

and for all $w \in \{w | ||w|| < 2W\}$ and $b \in \{b | |b| < 2B\}$, λ min \int \mathbb{E}_q $\sqrt{ }$ $k_{\sigma}^{\star}\nabla^{2}_{[\boldsymbol{w},b]}\psi$ con $(\langle \boldsymbol{w}, \boldsymbol{x} \rangle + b)$ \bigcap $\geq \sigma^d \Lambda_{\sf min},$ holds with h.p.. Then for all $0 < \sigma < \sigma_0, n > N$, $\|\mathbf{w}(\mathbf{x}^*) - \nabla(h \circ r)(\mathbf{x}^*)\| \leq$ *√ K* $\frac{K}{n\sigma^d} + \kappa C_kC_{\psi''_{\mathsf{con}}} \sigma^2$ Λ min *,*

Figure 1: Particle Trajectories of SVGD, SVGD with AdaGrad, NW, LL. Approximated KL $[q_t, p]$ with different methods.

NW estimator of the backward KL velocity field:

$$
\hat{\boldsymbol{u}}_t(\boldsymbol{x}^{\star})\approx\frac{\widehat{\mathbb{E}}_{q_t}[k_{\sigma}^{\star}\nabla\log p(\boldsymbol{x})+\nabla k_{\sigma}^{\star}]}{\text{Stein Variational Gradient Descent}}/\widehat{\mathbb{E}}_{q_t}[k_{\sigma}^{\star}].
$$

4. Local Linear Interpolation of Velocity Fields

•How to interpolate if we only have samples *x ∼ p*?

Mirror divergence:

Let $D_{\phi}[p,q]$ and $D_{\psi}[p,q]$ denote two f divergences with *f* being *ϕ* and *ψ* respectively. D_{ψ} is the mirror of D_{ϕ} if and only if $\psi'(r) \triangleq r\phi'(r) - \phi(r)$, where \triangleq means equal

 $\textsf{Assumption 5.2.}~\|\psi''_{\mathsf{con}}\|_\infty \leq C_{\psi''_{\mathsf{con}}}.$

 $\mathsf{Define} \colon b^* := h(r(\boldsymbol{x}^{\star})) - \langle \nabla(h \circ r)(\boldsymbol{x}^{\star}), \boldsymbol{x}^{\star} \rangle.$

up to a constant.

Suppose *h* is associated with *Dϕ*,

 $h \circ r =$ argmax $\mathbb{E}_p[d(\boldsymbol{x})] - \mathbb{E}_q[\psi_{\mathsf{con}}(d(\boldsymbol{x}))],$ (1) *d* where ψ_{con} is the *convex conjugate* of ψ .

• Now we can *h ◦ r*, but how to get *∇*(*h ◦ r*)?

LL interpolation:

- Parameterize the function *d* in (1) using a linear $\mathbf{model} \ d_{\boldsymbol{w},b}(\boldsymbol{x}) := \langle \boldsymbol{w}, \boldsymbol{x} \rangle + b.$
- Localize (1) at a fixed point x^* using a kernel k^*_{σ} *σ* .

```
(w(\boldsymbol{x}^\star), b(\boldsymbol{x}^\star)) = \argmax \ell(\boldsymbol{w}, b; \boldsymbol{x}^\star),w∈Rd
,b∈R
          \ell(\bm{w}, b; \bm{x}^{\star}) := \widehat{\mathbb{E}}_p[k_{\sigma}^{\star}d_{\bm{w},b}(\bm{x})] - \widehat{\mathbb{E}}_q[k_{\sigma}^{\star}\psi_{\mathsf{con}}(d_{\bm{w},b}(\bm{x}))]
```
The consistency of the interpolation depends on the "curvature" of the velocity field:

Assumption 5.1. The velocity fields is well-behaved, i.e.,

and the boundedness of the second order derivative

holds with high probability.

6. Experiments

Transport distribution by minimizing KL[*q^t , p*]

 $-$ As $t \to \infty$, $\mathcal{F}(q_t)$ is reduced.

Domain adaptation by minimizing KL[*q^t , p*]

Figure 2: Left: the source classifier (represented by colored areas) misclassifies many testing points (colored dots). Middle: WGF moves particles to align the source and target samples. Lines are trajectories of sample movements in each class. Right: the retrained classifier on the transported source samples gives a much better prediction.

References

- [1] Y. Gao, Y. Jiao, Y. Wang, Y. Wang, C. Yang, and S. Zhang. Deep generative learning via variational gradient flow. In International Conference on Machine Learning (ICML 2019), pages 2093–2101, 2019.
- [2] M. Yi, Z. Zhu, and S. Liu. Monoflow: Rethinking divergence gans via the perspective of wasserstein gradient flows. In International Conference on Machine Learning (ICML 2023), pages 39984–40000, 2023.