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1. Motivations

« Many tasks can be formulated as minimizing statis-
tical discrepancies between a particle distribution ¢
and a target distribution p:

—Variational Inference, Generative Modeling ...

e f-divergences are common choices of such statistical

discrepancies:

- Hion. - p(x)
Definition: D[p, q| .= [ q(x)f (q<w)) dx
—Examples: Forward KL, Backward KL, Pearson’s 2,
and Neyman’s y°...
« How to minimize these divergences by moving ¢’s
particles in sample space (R%)?

— Particle movement is governed by velocity field.

We show that velocity field induced by the
Wasserstein Gradient Flow can be effectively
estimated via interpolation techniques.

2. Wasserstein Gradient Flow

» Wasserstein Gradient Flow (WGF) of a functional ob-
jective F(q;) is a curve in a probability space P(R¢)

qr - R+ — P(Rd)
—Ast — o0, F(q) is reduced.

 Let F(q;) be the f-divergence Dy[p,q], WGF ¢, in-
duces the following particle moving ODE (Yi et al,
2023, Gao et al., 2019, Ansari 2021):

dwt — V(h o Tt>($t)dt.
—where h(r;) = rif'(ry) — f(re), e

4
q

In plain words, moving particles x; accord-
ing to the velocity field V(h o r;)(x;) reduces

D¢|p, ¢ over time t.

« In practice, we move particles by the Euler discretiza-
tion of the above ODE:

—Draw particles o, from an initial distribution ¢

—Fortimet=0,1...7T"
xi = x +nV(hor)(x)

where 7 is a small step size.

3. Velocity Field Estimation by
Interpolation

« How to compute the velocity field V(h o 1) (x*)?

—For backward KL, h o r; = log r.

—We do not know 7.

» Nadaraya-Watson (NW) Interpolation:

—Observe g(x) at {x;}"_, ~ g, NW interpolates g(x*)
by computing:

AN AN

g(x”) = Eqglko(x, ") g ()| /By (2, 7).
« NW interpolation of the backward KL field is

AN AN

w(x”) == By ko(z, ")V log ri(x)] /By [k(x, 7)),
—not tractable as we do not know r;.

—What if we know the target p(x)? e.g., Bayesian in-
ference

Due to integration by parts,
E, |k Vlogr(x)] =E,|k;V log p(x) + VK]
NW estimator of the backward KL velocity field:

w(a*) ~ E, [k V logp(x) + V3] /B, k]
—e— | —eee

Stein Variational Gradient Descent

4. Local Linear Interpolation
of Velocity Fields

« How to interpolate if we only have samples  ~ p?

Mirror divergence:

Let Dylp,q| and Dylp,q] denote two f-
divergences with f being ¢ and i respec-
tively. D, is the mirror of D, if and only if
V'(r) = rd'(r) — ¢(r), where = means equal
up to a constant.

Suppose h is associated with Dy,

o = argmax Efd(a)] — Efven(d(@)]. ()

where 9o, is the convex conjugate of .

* Now we can h o r, buthowtoget V(hor)?

Local linear (LL) regression for gradient est.:
Approximate function g at * by a linear model:

g(x) = (B(x7), x) + Ho(x”).

B(x*) ~ Vg(ax*) as the gradient of a function is the
“slope” of its best local linear fit.

LL interpolation:

 Parameterize the function d in (1) using a linear
model dy, j(x) = (w, ) + 0.

» Localize (1) at a fixed point =* using a kernel k*.

(w(z”), b(x")) = argmax ((w, b; "),
welR? beR

Uw, by ") =E,[kidw ()] — Eglkitbcon(duwp(@))
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5. Estimation Consistency

The consistency of the interpolation depends on the
“curvature” of the velocity field:

Assumption 5.1. The velocity fields is well-behaved, i.e.,

sup [|[Vi(hor)(z)|| < k.

rcX
and the boundedness of the second order derivative

of ¥/

con®

Assumption 5.2. || |lco < Cyy

Define: b* := h(r(x*)) — (V(hor)(x*), x*).
Theorem 5.3. Suppose Assumption 5.1 and 5.2 holds and

other mild assumptions on the kernel k, hold, if there
exist strictly positive constants W, B, Anmin such that,

IV(hor)(@)|| <W, [p"]<B
and for all w € {w|||lw| < 2W}andb € {b||b| < 2B},
Arin { By Ky V2, tbeon((w, @) + B) | } > 0" Armin,
holds with h.p.. Then forall 0 < o < gyp,n > N,

Kd + kCLCyr o’
[w(a*) — V(hor)a)| < Lo o
Amin

holds with high probability.

6. Experiments

Transport distribution by minimizing KL|q¢;, p|
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Figure 1: Particle Trajectories of SVGD, SVGD with AdaGrad, NW, LL. Approxi-
mated KL|q;, p] with different methods.

Domain adaptation by minimizing KL|¢;, p|

test accuracy: 0.654 test accuracy: 0.808

Figure 2: Left: the source classifier (represented by colored areas) misclassifies
many testing points (colored dots). Middle: WGF moves particles to align the
source and target samples. Lines are trajectories of sample movements in each
class. Right: the retrained classifier on the transported source samples gives a
much better prediction.
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