Minimizing *f*-Divergences by **Interpolating Velocity Fields**

Song Liu¹ (song.liu@bristol.ac.uk), Jiahao Yu¹, Jack Simons¹, Mingxuan Yi¹, Mark Beaumont¹ ¹School of Mathematics, University of Bristol, UK

Motivations

- Many tasks can be formulated as minimizing statis**tical discrepancies** between a particle distribution q and a target distribution *p*:
- Variational Inference, Generative Modeling ...
- *f*-divergences are common choices of such statistical discrepancies:
- -Observe $g(\boldsymbol{x})$ at $\{\boldsymbol{x}_i\}_{i=1}^n \sim q$, NW interpolates $g(\boldsymbol{x}^{\star})$ by computing:

 $\hat{g}(\boldsymbol{x}^{\star}) := \widehat{\mathbb{E}}_q[k_{\sigma}(\boldsymbol{x}, \boldsymbol{x}^{\star})g(\boldsymbol{x})]/\widehat{\mathbb{E}}_q[k_{\sigma}(\boldsymbol{x}, \boldsymbol{x}^{\star})].$

• NW interpolation of the backward KL field is

 $\hat{\boldsymbol{u}}_t(\boldsymbol{x}^{\star}) := \widehat{\mathbb{E}}_{q_t}[k_{\sigma}(\boldsymbol{x}, \boldsymbol{x}^{\star}) \nabla \log r_t(\boldsymbol{x})] / \widehat{\mathbb{E}}_{q_t}[k(\boldsymbol{x}, \boldsymbol{x}^{\star})],$

- not tractable as we do not know r_t .
- What if we know the target $p(\boldsymbol{x})$? e.g., Bayesian inference

Due to integration by parts,

Supported by EPSRC CDT in Computational Statistics and Data Science, Alumni and Friends.

Estimation Consistency

The consistency of the interpolation depends on the "curvature" of the velocity field:

Assumption 5.1. The velocity fields is well-behaved, i.e.,

 $\sup_{\boldsymbol{x}\in\mathcal{X}} \|\nabla^2(h\circ r)(\boldsymbol{x})\| \leq \kappa.$ and the boundedness of the second order derivative

of ψ''_{con} .

- -Definition: $D_f[p,q] := \int q(\boldsymbol{x}) f\left(\frac{p(\boldsymbol{x})}{q(\boldsymbol{x})}\right) d\boldsymbol{x}$
- Examples: Forward KL, Backward KL, Pearson's χ^2 , and Neyman's χ^2 ...
- How to minimize these divergences by moving q's particles in sample space (\mathbb{R}^d)?
- Particle movement is governed by velocity field.

We show that velocity field induced by the Wasserstein Gradient Flow can be effectively estimated via interpolation techniques.

 $\mathbb{E}_{q_t}[k_{\sigma}^{\star} \nabla \log r_t(\boldsymbol{x})] = \mathbb{E}_{q_t}[k_{\sigma}^{\star} \nabla \log p(\boldsymbol{x}) + \nabla k_{\sigma}^{\star}].$

NW estimator of the backward KL velocity field:

$$\hat{\boldsymbol{u}}_t(\boldsymbol{x}^{\star}) \approx \underbrace{\widehat{\mathbb{E}}_{q_t}[k_{\sigma}^{\star} \nabla \log p(\boldsymbol{x}) + \nabla k_{\sigma}^{\star}]}_{\text{Stein Variational Gradient Descent}} / \widehat{\mathbb{E}}_{q_t}[k_{\sigma}^{\star}].$$

Local Linear Interpolation 4. of Velocity Fields

• How to interpolate if we only have samples $x \sim p$?

Wasserstein Gradient Flow

• Wasserstein Gradient Flow (WGF) of a functional objective $\mathcal{F}(q_t)$ is a curve in a probability space $\mathcal{P}(\mathbb{R}^d)$ $q_t: \mathbb{R}^+ \to \mathcal{P}(\mathbb{R}^d).$

Mirror divergence:

Let $D_{\phi}[p,q]$ and $D_{\psi}[p,q]$ denote two fdivergences with f being ϕ and ψ respectively. D_{ψ} is the mirror of D_{ϕ} if and only if $\psi'(r) \triangleq r\phi'(r) - \phi(r)$, where \triangleq means equal Assumption 5.2. $\|\psi_{con}''\|_{\infty} \leq C_{\psi_{con}''}$.

Define: $b^* := h(r(\boldsymbol{x}^*)) - \langle \nabla(h \circ r)(\boldsymbol{x}^*), \boldsymbol{x}^* \rangle$.

Theorem 5.3. *Suppose Assumption 5.1 and 5.2 holds and* other mild assumptions on the kernel k_{σ} hold, if there exist strictly positive constants W, B, Λ_{\min} such that,

 $\|\nabla(h \circ r)(\boldsymbol{x}^{\star})\| \le W, \quad |b^*| \le B$

and for all $w \in \{w | ||w|| < 2W\}$ and $b \in \{b | |b| < 2B\}$, $\lambda_{\min}\left\{\widehat{\mathbb{E}}_{q}\left[k_{\sigma}^{\star}\nabla_{[\boldsymbol{w},b]}^{2}\psi_{\operatorname{con}}(\langle\boldsymbol{w},\boldsymbol{x}\rangle+b)\right]\right\}\geq\sigma^{d}\Lambda_{\min},$ holds with h.p.. Then for all $0 < \sigma < \sigma_0, n > N$, $\|\boldsymbol{w}(\boldsymbol{x}^{\star}) - \nabla(h \circ r)(\boldsymbol{x}^{\star})\| \leq \frac{\frac{K}{\sqrt{n\sigma^d}} + \kappa C_k C_{\psi_{\text{con}}''}\sigma^2}{\Lambda_{\text{min}}},$

holds with high probability.

Experiments 6.

Transport distribution by minimizing KL[q_t, p]

-As $t \to \infty$, $\mathcal{F}(q_t)$ is reduced.

• Let $\mathcal{F}(q_t)$ be the *f*-divergence $D_f[p, q_t]$, WGF q_t induces the following particle moving ODE (Yi et al., 2023, Gao et al., 2019, Ansari 2021):

 $\mathbf{d}\boldsymbol{x}_t = \nabla(h \circ r_t)(\boldsymbol{x}_t)\mathbf{d}t.$ -where $h(r_t) = r_t f'(r_t) - f(r_t)$, $r_t := \frac{p}{q_t}$.

In plain words, moving particles x_t according to the velocity field $\nabla(h \circ r_t)(\boldsymbol{x}_t)$ reduces $D_f[p, q_t]$ over time t.

- In practice, we move particles by the Euler discretization of the above ODE:
- Draw particles \boldsymbol{x}_0 from an initial distribution q_0

– For time t = 0, 1 ... T:

 $\boldsymbol{x}_{t+1} := \boldsymbol{x}_t + \eta \nabla (h \circ r_t)(\boldsymbol{x}_t)$

where η is a small step size.

up to a constant.

Suppose h is associated with D_{ϕ} ,

 $h \circ r = \operatorname{argmax} \mathbb{E}_p[d(\boldsymbol{x})] - \mathbb{E}_q[\psi_{\operatorname{con}}(d(\boldsymbol{x}))],$ where ψ_{con} is the *convex conjugate* of ψ .

(1)

• Now we can $h \circ r$, but how to get $\nabla(h \circ r)$?

Local linear (LL) regression for gradient est.: Approximate function g at x^* by a linear model:

 $\hat{g}(\boldsymbol{x}) := \langle \boldsymbol{\beta}(\boldsymbol{x}^{\star}), \boldsymbol{x} \rangle + \beta_0(\boldsymbol{x}^{\star}).$ $g(oldsymbol{x})$ $(oldsymbol{x}^{\star}, \hat{g}(oldsymbol{x}^{\star}))$

 \boldsymbol{x}

 $pprox
abla g(oldsymbol{x}^{\star})$ as the gradient of a function is the $oldsymbol{eta}(x^{\star})$ "slope" of its best local linear fit.

Figure 1: Particle Trajectories of SVGD, SVGD with AdaGrad, NW, LL. Approximated $KL[q_t, p]$ with different methods.

Domain adaptation by minimizing KL[q_t, p]

Figure 2: Left: the source classifier (represented by colored areas) misclassifies many testing points (colored dots). Middle: WGF moves particles to align the source and target samples. Lines are trajectories of sample movements in each class. Right: the retrained classifier on the transported source samples gives a much better prediction.

Velocity Field Estimation by 3. Interpolation

- How to compute the velocity field $\nabla(h \circ r_t)(\boldsymbol{x}^{\star})$?
- For backward KL, $h \circ r_t = \log r_t$.
- We do not know r_t .
- Nadaraya-Watson (NW) Interpolation:

LL interpolation:

- Parameterize the function d in (1) using a linear model $d_{\boldsymbol{w},b}(\boldsymbol{x}) := \langle \boldsymbol{w}, \boldsymbol{x} \rangle + b.$
- Localize (1) at a fixed point x^* using a kernel k_{σ}^* .

```
(\boldsymbol{w}(\boldsymbol{x}^{\star}), b(\boldsymbol{x}^{\star})) = \operatorname{argmax} \ell(\boldsymbol{w}, b; \boldsymbol{x}^{\star}),
                                                                        oldsymbol{w}{\in}\mathbb{R}^{d}, b{\in}\mathbb{R}
             \ell(\boldsymbol{w}, b; \boldsymbol{x}^{\star}) := \widehat{\mathbb{E}}_p[k_{\sigma}^{\star} d_{\boldsymbol{w}, b}(\boldsymbol{x})] - \widehat{\mathbb{E}}_q[k_{\sigma}^{\star} \psi_{\mathsf{con}}(d_{\boldsymbol{w}, b}(\boldsymbol{x}))]
```

References

- [1] Y. Gao, Y. Jiao, Y. Wang, Y. Wang, C. Yang, and S. Zhang. Deep generative learning via variational gradient flow. In International Conference on Ma*chine Learning (ICML 2019)*, pages 2093–2101, 2019.
- [2] M. Yi, Z. Zhu, and S. Liu. Monoflow: Rethinking divergence gans via the perspective of wasserstein gradient flows. In International Conference on Machine Learning (ICML 2023), pages 39984-40000, 2023.