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1. Motivations
•Many tasks can be formulated asminimizing statis-
tical discrepancies between a particle distribution q
and a target distribution p:

–Variational Inference, Generative Modeling …

• f -divergences are commonchoicesof such statistical
discrepancies:

–Definition: Df [p, q] :=
∫
q(x)f

(
p(x)
q(x)

)
dx

– Examples: Forward KL, Backward KL, Pearson’s χ2,
and Neyman’s χ2…

•How to minimize these divergences by moving q’s
particles in sample space (Rd)?

– Particle movement is governed by velocity field.

We show that velocity field induced by the
Wasserstein Gradient Flow can be effectively
estimated via interpolation techniques.

2. Wasserstein Gradient Flow
•Wasserstein Gradient Flow (WGF) of a functional ob-
jective F(qt) is a curve in a probability space P(Rd)

qt : R+ → P(Rd).

–As t→ ∞, F(qt) is reduced.

• Let F(qt) be the f -divergence Df [p, qt], WGF qt in-
duces the following particle moving ODE (Yi et al.,
2023, Gao et al., 2019, Ansari 2021):

dxt = ∇(h ◦ rt)(xt)dt.

–where h(rt) = rtf
′(rt)− f (rt), rt := p

qt
.

In plain words, moving particles xt accord-
ing to the velocity field ∇(h ◦ rt)(xt) reduces
Df [p, qt] over time t.

• In practice, wemove particles by the Euler discretiza-
tion of the above ODE:

–Draw particles x0 from an initial distribution q0
– For time t = 0, 1 . . . T :

xt+1 := xt + η∇(h ◦ rt)(xt)

where η is a small step size.

3. Velocity Field Estimation by
Interpolation

•How to compute the velocity field∇(h ◦ rt)(x⋆)?

– For backward KL, h ◦ rt = log rt.

–We do not know rt.

• Nadaraya-Watson (NW) Interpolation:

–Observe g(x) at {xi}ni=1 ∼ q, NW interpolates g(x⋆)
by computing:

ĝ(x⋆) := Êq[kσ(x,x⋆)g(x)]/Êq[kσ(x,x⋆)].

•NW interpolation of the backward KL field is

ût(x
⋆) := Êqt[kσ(x,x⋆)∇ log rt(x)]/Êqt[k(x,x⋆)],

–not tractable as we do not know rt.

–What if we know the target p(x)? e.g., Bayesian in-
ference

Due to integration by parts,

Eqt [k⋆σ∇ log rt(x)] = Eqt[k⋆σ∇ log p(x) +∇k⋆σ].

NW estimator of the backward KL velocity field:

ût(x
⋆) ≈ Êqt[k⋆σ∇ log p(x) +∇k⋆σ]︸ ︷︷ ︸

Stein Variational Gradient Descent

/Êqt[k⋆σ].

4. Local Linear Interpolation
of Velocity Fields

•How to interpolate if we only have samples x ∼ p?

Mirror divergence:

Let Dϕ[p, q] and Dψ[p, q] denote two f -
divergences with f being ϕ and ψ respec-
tively. Dψ is the mirror of Dϕ if and only if
ψ′(r) ≜ rϕ′(r) − ϕ(r), where ≜ means equal
up to a constant.

Suppose h is associated withDϕ,

h ◦ r = argmax
d

Ep[d(x)]− Eq[ψcon(d(x))], (1)

where ψcon is the convex conjugate of ψ.

• Nowwe can h ◦ r, but how to get∇(h ◦ r)?

Local linear (LL) regression for gradient est.:
Approximate function g at x⋆ by a linear model:

ĝ(x) := ⟨β(x⋆),x⟩ + β0(x
⋆).

(x⋆, ĝ(x⋆))

ĝ

x

g
(x

)

β(x⋆) ≈ ∇g(x⋆) as the gradient of a function is the
“slope” of its best local linear fit.

LL interpolation:
• Parameterize the function d in (1) using a linear
model dw,b(x) := ⟨w,x⟩ + b.

• Localize (1) at a fixed point x⋆ using a kernel k⋆σ.

(w(x⋆), b(x⋆)) = argmax
w∈Rd,b∈R

ℓ(w, b;x⋆),

ℓ(w, b;x⋆) :=Êp[k⋆σdw,b(x)]− Êq[k⋆σψcon(dw,b(x))]

5. Estimation Consistency
The consistency of the interpolation depends on the
“curvature” of the velocity field:

Assumption 5.1. The velocity fields is well-behaved, i.e.,

sup
x∈X

∥∇2(h ◦ r)(x)∥ ≤ κ.

and the boundedness of the second order derivative
of ψ′′

con.

Assumption 5.2. ∥ψ′′
con∥∞ ≤ Cψ′′

con
.

Define: b∗ := h(r(x⋆))− ⟨∇(h ◦ r)(x⋆),x⋆⟩.

Theorem 5.3. Suppose Assumption 5.1 and 5.2 holds and
other mild assumptions on the kernel kσ hold, if there
exist strictly positive constantsW,B,Λmin such that,

∥∇(h ◦ r)(x⋆)∥ ≤ W, |b∗| ≤ B

and for allw ∈ {w|∥w∥ < 2W} and b ∈ {b||b| < 2B},

λmin

{
Êq

[
k⋆σ∇2

[w,b]ψcon(⟨w,x⟩ + b)
]}

≥ σdΛmin,

holds with h.p.. Then for all 0 < σ < σ0, n > N ,

∥w(x⋆)−∇(h ◦ r)(x⋆)∥ ≤
K√
nσd

+ κCkCψ′′
con
σ2

Λmin
,

holds with high probability.

6. Experiments
Transport distribution by minimizing KL[qt, p]

Figure 1: Particle Trajectories of SVGD, SVGD with AdaGrad, NW, LL. Approxi-
mated KL[qt, p]with different methods.

Domain adaptation by minimizing KL[qt, p]

Figure 2: Left: the source classifier (represented by colored areas) misclassifies
many testing points (colored dots). Middle: WGF moves particles to align the
source and target samples. Lines are trajectories of samplemovements in each
class. Right: the retrained classifier on the transported source samples gives a
much better prediction.
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