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DDIM Sampling: multiple step denoising
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Problems with Existing Distillation Methods

1). Direct distillation approaches need to generate noise-
Image targets through multi-step DDIM sampling, which is
expensive.

In this work, we propose to learn from a “signal-ODE"
derived from the original diffusion model by predict the
“signal” part of the original DDIM path:
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We can rewrite DDIM sampling as:
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Learning with Bootstrapping

The training object is to match the student output at two
different timesteps with the help of teacher ODE
solvers. Through bootstrapping, the student model can
learn to generate samples from noise directly.
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Boundary Condition
In theory, the boundary can be arbitrary values since

ar = 0. We make the student model learn in a truncated
range r € | ] and add an auxiliary boundary loss:

tmin’ tmax

'Cgc — -EGNN(O,I) [Hf¢(€a tmax) — yH(Ea tmax)”%}

t=10.99

t=0.92

£y

=t

t =0.85 t=0.7 t=0.1 t=0.99 t=0.92 t=0.85 t=0.7 t=0.1

RERR FRY

(a) without boundary loss

(b) with boundary loss

Distillation of Text-to-Image Models

Our method can be readily applied for distilling
conditional diffusion models In either pixel space or
latent space.
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Our Algorithm

Algorithm 1 Distillation using BOOT for Conditional Diffusion Models.

Require: pretrained diffusion model f, initial student parameter from the teacher 6 <— ¢, step size 0, learning rate 7, CFG
weight w, context dataset D, negative condition 72 = 0, tmin, tmax, B-
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16: end while
17: return Trained model parameters ¢
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