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Abstract

We consider the training of Transformers on a simple next token prediction task

for the autoregressive process s,.; = Ws;. We show how a trained Transformer
predicts the next token by first learning W in-context, and then applying a prediction
mapping. We call the resulting procedure in-context autoregressive learning.

Notations. ||.|| is the /5 norm. O(d) (resp U(d)) is the orthogonal (resp unitary)
manifold: O(d) = {W € R>™W'W = I;} and U(d) = {W € C*W*W = I,}.

Transformers for next-token prediction

e Given a sequence of tokens (si,...,s7,...), Transformers are trained to match
sip = (81,...,57) to sy for all T,

1 Transformer S1= 5

52 Sy & 53

Adapts its computations based on attention coefficients.

ST—1 = 371

St Masked attention matrix ST = S141

We want to show that, assuming the tokens satisfy sy = ¢w(si.7), with
W varying with each sequence, the trained Transformer decomposes its prediction
into 2 steps: first, estimating W (in-context mapping) and then applying a simple
prediction mapping.

We focus on the autoregressive process of order 1: s, | = Ws,.
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Figure 1: Two autoregressive processes of order 1 in RS,

Token Encoding

Each sequence begins with an initial token s; = 1,;. The subsequent states are generated
according to s,.1 = Ws,. W is the context matrix, sampled uniformly from a subset
Co (respectively, Cr) of O(d) (respectively, U(d)): W ~ W =U(C). We consider two

settings in which the sequence s;.7 is first mapped to a new sequence ¢ 7.

o Augmented Setting: the tokens are defined as ¢; .= (0, s;, s, 1), aligning with the
setup used by Von Oswald et al. (2023).

e Non-Augmented Setting: the tokens are simply ¢; = s;.

The matrices W commute. Hence, they are co-
Up to a change of basis, we suppose

S, X(g), ‘)\z‘ — 1}, with d = 20.

Commutativity assumption.
diagonalizable in a unitary basis of C%*¢.

CU — {dlag()\la "o 7)‘65)7 ‘)\Z‘ — 1}1 CO — {()\17 Xl, e

How do Transformers Perform In-Context Autoregressive Learning?
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Causal Linear Multi-Head Attention

We consider a model 7 involving Causal Linear Multi-Head Attention:

61:TH > > Att/Bth’ te{l '} (1)
h=1 t'=

A" is the attention matrix:
h h
At,t’ — Pt,t’<A Gt’€t/>.

with P € RIm>Tmax js an optionally trainable positional encoding. The trainable pa-
rameters are 0 = (A", B")1<h<g, P)

e We focus on the population loss, defined as:
TmaX

— ZEWNWH%(GLT) — ST+1H27 (2)
T=2

indicating the model’s objective to predict s given e;.7.

In-Context Autoregressive Learning

Contributions:

e Theoretically characterize ¢ that minimize /.
e Discuss the convergence of gradient descent to these minima.

e Characterize the in-context autoregressive learning process of the model.

In-Context Autoregressive Learning

We say that 7y learns autoregressively in-context the AR process s, 1 = Ws; if
To-(e1.7) can be decomposed in two steps:

o First applying an in-context mapping v = ['g-(e1.7)
® Then using a prediction mapping Ty-(e1.77) = 1y(e1.7). This prediction mapping
should be of the form 1, (¢e,.77) = s, for some shift 7 € {1,--- ,T}.

With such a factorization, in-context learning arises when the training loss £(0%) is
small. This corresponds to having [y-(c1.7) ~ W=7 when applied to data ;.7
exactly generated by the AR process with matrix V.

In-Context Mapping with Gradient Descent

o Augmented tokens ¢, .= (0, s, s, 1) and W =U(Cy).
e Model Ty(e1) = (eT Z?:1<A6T\et>@Bet>

e Parametrization: we take A and B as

1:d '

(00 0 ) (0 byI T )
A=10a I ard and B=100 0
\Oaglaﬂ/ \O 0 O/
Loss (2) is minimal for 6" such that af + af = a5 = b5 = 0 and a3b] =

S~

12 (T24(d—1)T)"
gradient descent on the loss L(W,e1.7) = 3 LS~
initialization W = 0, with a step size asymptotlcally equivalent to

to 1.

Furthermore, an optimal in-context mapping [’y is one step of

Y1511 — Wsy||? starting from the

3 -
T with respect
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In-Context Mapping as a Geometric Relation

e Non-augmented tokens ¢; = s;.
e Model Ty(c,.7) =S S Proy{e)|Aler Ve Ble,.
o Parametrization: we take A" = diag(a;) and B" = diag(by,).

Then there exists A and B € R¥*? such that one has for ¢;.7 = (14, \,--- , A1)

Tolerr) ZPT BTANTT o AL
=1

® Any 0" = (A", B, P*) achieving zero of the loss (2) satisfies P |, =0if ¢t # T,
}_LT(B*TA*)Z-Z- =1, and (B*'A%);; = 0 for i # j. Therefore, one must have
H > d. An optimal in-context mapping satisfies ['y:(¢1.7) = ep | ® e and the
predictive mapping ¥ (e.7) = v ® er.
o Loss (2) reads £(A,B, P) = S5 I(BTA, Pr_,) with
[(C,p) = |Ipll3lICll% + pr—: 2S(CTC) — 2Tr(C)pr + d, where S' is the sum of all
coefficients operator.

® The equality (B'A);; = 0 for ¢ # j corresponds to an orthogonality property between
heads. When there are more than d heads, some can be pruned.

e Even for T},.« = 2 convergence of gradient descent in (A, B, ) on £ to a global
minimum is an open problem (matrix factorization).

Any 0% = (A*,B*, P*) with £(0%) = 0 in (2) satisfies, denoting C* = B*'A* and
pr=Pr_:pf=0ift <T—1,p3C;, =1, ppC5;_1 5, +(C5 _19; 1 +C5_10:)P7_1 =
0, p7Coi i1 + (C§¢,2¢ + C§z,2¢—1)p*T—1 =0, Cy_y; = C5; = 0for j # 26 — 1,21,
An optimal in-context mapping is then, for ¢, = A=t Ty (e;r) = A2, and the

corresponding predictive mapping tr,.(., \(€17) = Noer =M

Interpretation: The relation implemented by Iy« is an extension of a known formula

in trigonometry: 2cos pR, — I, = Ry, with R, the rotation of parameter p in R?.
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Figure 2: Trigonometric formula implemented by the Trans-

former in-context. The minima of the training loss correspond to

0.0

implementing, up to multiplying factors: 2cos pR, — I> = Ry,.
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Figure 3: Matrices A, B, B'A and P after training on loss (2) with random initialization.
Left: Unitary context case with H = 10. Right: Orthogonal context case, with H = 8 < d, which leads

to low rank B ' A.

Change in the Context Distribution

e Goal: Impact of the context distribution on the optimizaztion landscape. We break
the symmetry of the context distribution.

e Non-augmented tokens and d = 1: s, | = As; for |[A| = 1. For 4 > 1 and

p ~U(0,27), we define \ = e?/*,

e Parametrization: positional encoding-only attention, we take B'A = 1.

The Hessian H € R of [(p) =
Hyp =

x| Yoo X7 = AT is
70
P sin(4(t — 1)),

’ 47T(t/ — t) o)
With eigenvalues o1 () > - - -

> op(p), o1(p) — T and 04~1(u) — 0 as p — 400.
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Figure 4: Left: Positional encodings after training for © € {50, 100,200, 300}. First raw: P. Second

raw: plot of its last raw. Right: Comparison with cosine absolute PE used in machine translation.

Experiments

Validation of the token encoding choice.

1257 - S:L?;f?:; Figure 5: Setup: Create a dataset D with 'Moby Dick’ from nltk
> 100 - package using tokenizer and word embedding of pre-trained GPT-2
§ 75 - model. Also form Dg.me by permuting the tokens. Plot: his-
§ 50 - | I. tograms of the mean squared errors (MSE) when fitting an AR pro-

. cess to sequences in D (original, in blue) or Dy, me (shuffled, in
orange). We only display MSEs bigger than a threshold of 10~12,
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Augmented setting: In-Context Mapping with Gradient Descent
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5:107“ - Figure 6: Setup: We investigate whether the results of In-
Context Mapping with Gradient Descent still hold without

n assumptions the commutativity and parametrization assumptions.
= 1072 E Plot: evolution of the MSE with depth L. We compare with L
5 . 10—3_: steps of gradient descent on the inner loss. At initialization, the

MSE is between 1 and 2.

Non-Augmented setting: In-Context Mapping as a Geometric Relation

008" Test
' \ — —  Train Figure 7: Setup: We investigate whether the results of In-
N \\ Context Mapping as a Geometric Relation still hold without
= 0.07 1 \\\ assumptions the commutativity and parametrization assumptions.
\\’___ Plot: evolution of the MSE with the number of heads. At initial-
R el ization, the MSE is between 0.35 and 1.
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