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Abstract

We consider the training of Transformers on a simple next token prediction task
for the autoregressive process st+1 = Wst. We show how a trained Transformer
predicts the next token by first learning W in-context, and then applying a prediction
mapping. We call the resulting procedure in-context autoregressive learning.

Notations. ∥.∥ is the ℓ2 norm. O(d) (resp U(d)) is the orthogonal (resp unitary)
manifold: O(d) := {W ∈ Rd×d|W⊤W = Id} and U(d) := {W ∈ Cd×d|W ⋆W = Id}.

Transformers for next-token prediction

• Given a sequence of tokens (s1, . . . , sT , . . . ), Transformers are trained to match
s1:T := (s1, . . . , sT ) to sT+1 for all T .
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Goal

We want to show that, assuming the tokens satisfy sT+1 = ϕW (s1:T ), with
W varying with each sequence, the trained Transformer decomposes its prediction
into 2 steps: first, estimating W (in-context mapping) and then applying a simple
prediction mapping.

We focus on the autoregressive process of order 1: st+1 = Wst.
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Figure 1: Two autoregressive processes of order 1 in R3.

Token Encoding

Each sequence begins with an initial token s1 = 1d. The subsequent states are generated
according to st+1 = Wst. W is the context matrix, sampled uniformly from a subset
CO (respectively, CU) of O(d) (respectively, U(d)): W ∼ W := U(C). We consider two
settings in which the sequence s1:T is first mapped to a new sequence e1:T .
• Augmented Setting : the tokens are defined as et := (0, st, st−1), aligning with the

setup used by Von Oswald et al. (2023).
• Non-Augmented Setting : the tokens are simply et := st.
Commutativity assumption. The matrices W commute. Hence, they are co-
diagonalizable in a unitary basis of Cd×d. Up to a change of basis, we suppose
CU = {diag(λ1, · · · , λd), |λi| = 1}, CO = {(λ1, λ̄1, · · · , λδ, λ̄δ), |λi| = 1}, with d = 2δ.

Causal Linear Multi-Head Attention

We consider a model Tθ involving Causal Linear Multi-Head Attention:

e1:T 7→ (
H∑
h=1

t∑
t′=1

Ah
t,t′B

het′)t∈{1,··· ,T}. (1)

Ah is the attention matrix:
Ah
t,t′ = Pt,t′⟨Ahet|et′⟩.

with P ∈ RTmax×Tmax is an optionally trainable positional encoding. The trainable pa-
rameters are θ = ((Ah, Bh)1≤h≤H, P )

• We focus on the population loss, defined as:

ℓ(θ) :=
Tmax∑
T=2

EW∼W∥Tθ(e1:T ) − sT+1∥2, (2)

indicating the model’s objective to predict sT+1 given e1:T .

In-Context Autoregressive Learning

Contributions:
• Theoretically characterize θ∗ that minimize ℓ.
• Discuss the convergence of gradient descent to these minima.
• Characterize the in-context autoregressive learning process of the model.

In-Context Autoregressive Learning

We say that Tθ∗ learns autoregressively in-context the AR process st+1 = Wst if
Tθ∗(e1:T ) can be decomposed in two steps:
• First applying an in-context mapping γ = Γθ∗(e1:T )
• Then using a prediction mapping Tθ∗(e1:T ) = ψγ(e1:T ). This prediction mapping

should be of the form ψγ(e1:T ) = γsτ for some shift τ ∈ {1, · · · , T}.
With such a factorization, in-context learning arises when the training loss ℓ(θ∗) is
small. This corresponds to having Γθ∗(e1:T ) ≈ W T+1−τ when applied to data e1:T
exactly generated by the AR process with matrix W .

In-Context Mapping with Gradient Descent

• Augmented tokens et := (0, st, st−1) and W = U(CU).
• Model Tθ(e1:T ) =

(
eT +

∑T
t=1⟨AeT |et⟩CBet

)
1:d
.

• Parametrization: we take A and B as

A =


0 0 0
0 a1I a2I

0 a3I a4I

 and B =


0 b1I b2I

0 0 0
0 0 0

 .

Proposition (In-context autoregressive learning with gradient-descent)

Loss (2) is minimal for θ∗ such that a∗
1 + a∗

4 = a∗
2 = b∗

2 = 0 and a∗
3b

∗
1 =∑Tmax

T=2 T∑Tmax
T=2 (T 2+(d−1)T )

. Furthermore, an optimal in-context mapping Γθ∗ is one step of
gradient descent on the loss L(W, e1:T ) = 1

2
∑T−1

t=1 ∥st+1 −Wst∥2 starting from the
initialization W = 0, with a step size asymptotically equivalent to 3

2Tmax
with respect

to Tmax.

In-Context Mapping as a Geometric Relation

• Non-augmented tokens et := st.
• Model Tθ(e1:T ) =

∑H
h=1

∑T
t=1PT−1,t⟨et|AheT−1⟩CBhet.

• Parametrization: we take Ah = diag(ah) and Bh = diag(bh).
Then there exists A and B ∈ RH×d such that one has for e1:T = (1d, λ, · · · , λT−1) :

Tθ(e1:T ) =
T∑
t=1

PT−1,t[B⊤A]λt−T+1 ⊙ λt−1.

Proposition (Unitary optimal in-context mapping)

• Any θ∗ = (A∗, B∗, P ∗) achieving zero of the loss (2) satisfies P ∗
T−1,t = 0 if t ̸= T ,

P ∗
T−1,T (B∗⊤A∗)ii = 1, and (B∗⊤A∗)ij = 0 for i ̸= j. Therefore, one must have
H ≥ d. An optimal in-context mapping satisfies Γθ∗(e1:T ) = ēT−1 ⊙ eT and the
predictive mapping ψγ(e1:T ) = γ ⊙ eT .

• Loss (2) reads ℓ(A, B, P ) =
∑Tmax

T=2 l(B⊤A, PT−1) with
l(C, p) = ∥p∥2

2∥C∥2
F + pT−1

2S(C⊤C) − 2Tr(C)pT + d, where S is the sum of all
coefficients operator.

• The equality (B⊤A)ij = 0 for i ̸= j corresponds to an orthogonality property between
heads. When there are more than d heads, some can be pruned.

• Even for Tmax = 2 convergence of gradient descent in (A, B, P ) on ℓ to a global
minimum is an open problem (matrix factorization).

Proposition (Orthogonal optimal in-context mapping)

Any θ∗ = (A∗, B∗, P ∗) with ℓ(θ∗) = 0 in (2) satisfies, denoting C∗ = B∗⊤A∗ and
p∗ = P ∗

T−1: p∗
t = 0 if t < T −1, p∗

TC∗
i,i = 1, p∗

TC∗
2i−1,2i+(C∗

2i−1,2i−1 +C∗
2i−1,2i)p∗

T−1 =
0, p∗

TC∗
2i,2i−1 + (C∗

2i,2i + C∗
2i,2i−1)p∗

T−1 = 0, C∗
2i−1,j = C∗

2i,j = 0 for j ̸= 2i − 1, 2i.
An optimal in-context mapping is then, for et = λt−1: Γθ∗(e1:T ) = λ2, and the
corresponding predictive mapping ψΓθ∗(e1:T )(e1:T ) = λ2 ⊙ eT−1 = λT .

Interpretation: The relation implemented by Γθ∗ is an extension of a known formula
in trigonometry: 2 cos ρRρ − I2 = R2ρ, with Rρ the rotation of parameter ρ in R2.

Rρx
x
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2 cos(ρ)Rρx − x

Figure 2: Trigonometric formula implemented by the Trans-
former in-context. The minima of the training loss correspond to
implementing, up to multiplying factors: 2 cos ρRρ − I2 = R2ρ.

Figure 3: Matrices A, B, B⊤A and P after training on loss (2) with random initialization.
Left: Unitary context case with H = 10. Right: Orthogonal context case, with H = 8 < d, which leads
to low rank B⊤A.

Change in the Context Distribution

• Goal: Impact of the context distribution on the optimizaztion landscape. We break
the symmetry of the context distribution.

• Non-augmented tokens and d = 1: st+1 = λst for |λ| = 1. For µ ≥ 1 and
ρ ∼ U(0, 2π), we define λ = eiρ/µ.

• Parametrization: positional encoding-only attention, we take B⊤A = 1.

Proposition (Conditioning)

The Hessian H ∈ RT×T of l(p) := Eλ∼W(µ)|
∑T

t=1 ptλ
2t−T − λT |2 is

Ht,t′ = µ

4π(t′ − t)
sin(4(t′ − t)π

µ
).

With eigenvalues σ1(µ) ≥ · · · ≥ σT (µ), σ1(µ) → T and σt>1(µ) → 0 as µ → +∞.

Figure 4: Left: Positional encodings after training for µ ∈ {50, 100, 200, 300}. First raw: P . Second
raw: plot of its last raw. Right: Comparison with cosine absolute PE used in machine translation.

Experiments

Validation of the token encoding choice.
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Original
Shuffled Figure 5: Setup: Create a dataset D with ’Moby Dick’ from nltk

package using tokenizer and word embedding of pre-trained GPT-2
model. Also form Dshuffle by permuting the tokens. Plot: his-
tograms of the mean squared errors (MSE) when fitting an AR pro-
cess to sequences in D (original, in blue) or Dshuffle (shuffled, in
orange). We only display MSEs bigger than a threshold of 10−12.

Augmented setting: In-Context Mapping with Gradient Descent
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Figure 6: Setup: We investigate whether the results of In-
Context Mapping with Gradient Descent still hold without
assumptions the commutativity and parametrization assumptions.
Plot: evolution of the MSE with depth L. We compare with L

steps of gradient descent on the inner loss. At initialization, the
MSE is between 1 and 2.

Non-Augmented setting: In-Context Mapping as a Geometric Relation
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Train Figure 7: Setup: We investigate whether the results of In-

Context Mapping as a Geometric Relation still hold without
assumptions the commutativity and parametrization assumptions.
Plot: evolution of the MSE with the number of heads. At initial-
ization, the MSE is between 0.35 and 1.


