

How do Transformers Perform In-Context Autoregressive Learning?

Michael E. Sander⁽¹⁾, Raja Giryes⁽²⁾, Taiji Suzuki⁽³⁾, Mathieu Blondel⁽⁴⁾, Gabriel Peyré⁽¹⁾

(1) Ecole Normale Supérieure and CNRS, France. (2) Tel Aviv University, Israel. (3) University of Tokyo and RIKEN AIP, Japan. (4) Google DeepMind.

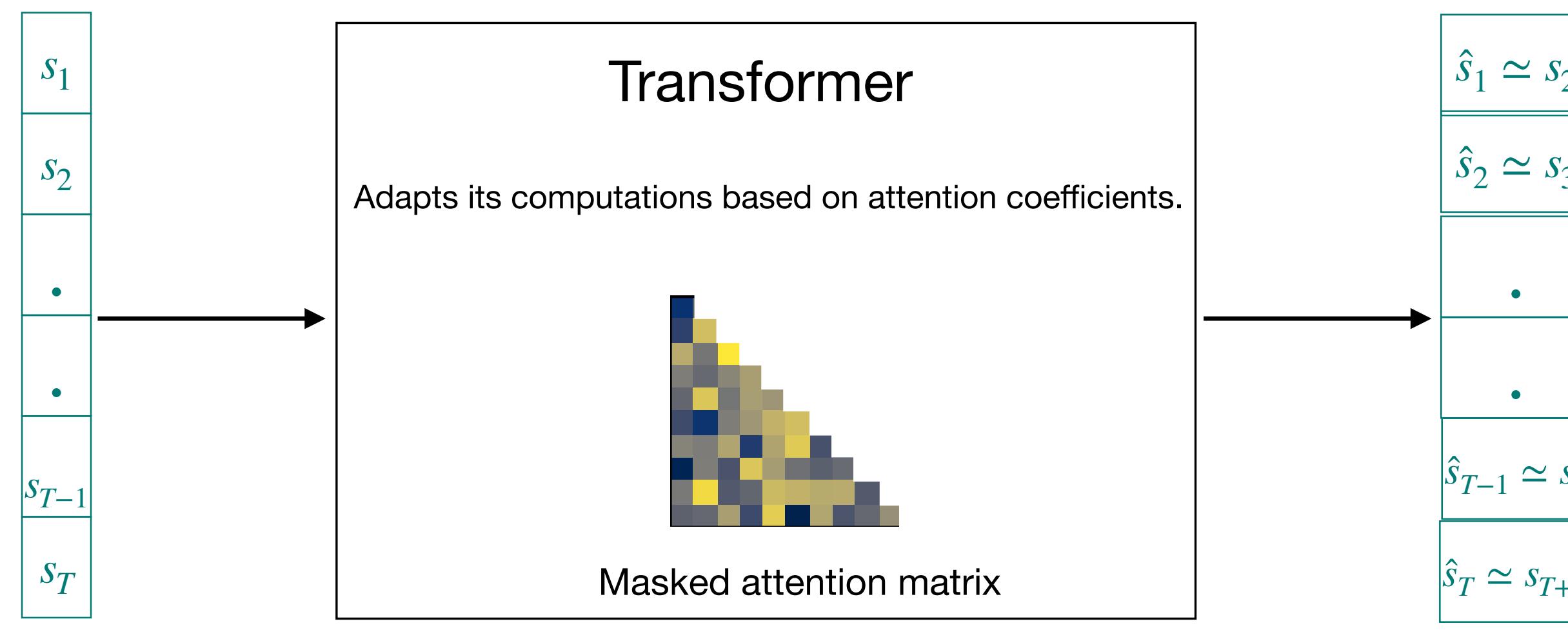
Abstract

We consider the training of Transformers on a simple next token prediction task for the autoregressive process $s_{t+1} = Ws_t$. We show how a trained Transformer predicts the next token by first learning W in-context, and then applying a prediction mapping. We call the resulting procedure *in-context autoregressive learning*.

Notations. $\|\cdot\|$ is the ℓ_2 norm. $O(d)$ (resp $U(d)$) is the orthogonal (resp unitary) manifold: $O(d) := \{W \in \mathbb{R}^{d \times d} | W^\top W = I_d\}$ and $U(d) := \{W \in \mathbb{C}^{d \times d} | W^\top W = I_d\}$.

Transformers for next-token prediction

- Given a sequence of tokens (s_1, \dots, s_T, \dots) , Transformers are trained to match $s_{1:T} := (s_1, \dots, s_T)$ to s_{T+1} for all T .



Goal

We want to show that, assuming the tokens satisfy $s_{T+1} = \phi_W(s_{1:T})$, with W varying with each sequence, the trained Transformer decomposes its prediction into 2 steps: first, estimating W (in-context mapping) and then applying a simple prediction mapping.

We focus on the autoregressive process of order 1: $s_{t+1} = Ws_t$.

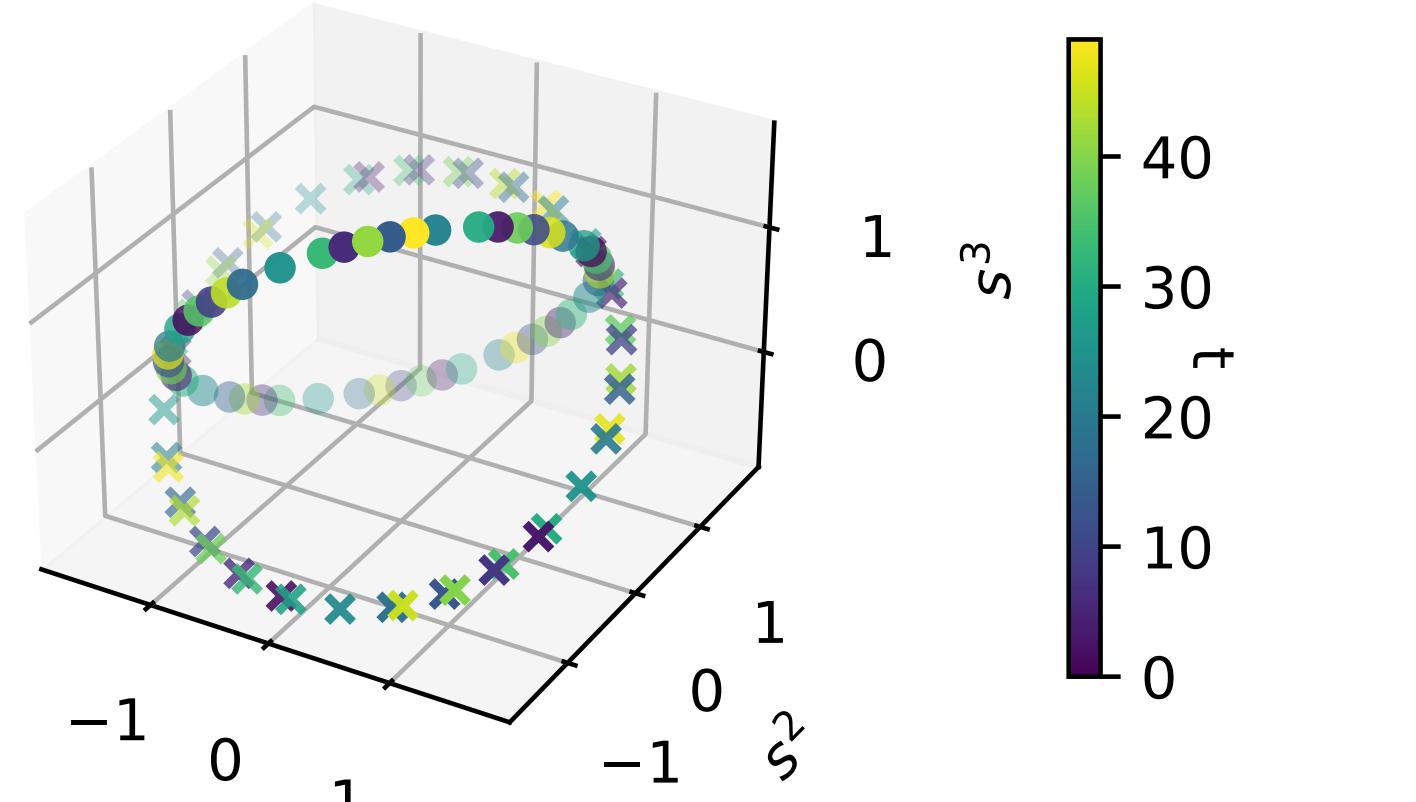


Figure 1: Two autoregressive processes of order 1 in \mathbb{R}^3 .

Token Encoding

Each sequence begins with an initial token $s_1 = 1_d$. The subsequent states are generated according to $s_{t+1} = Ws_t$. W is the **context matrix**, sampled uniformly from a subset \mathcal{C}_O (respectively, \mathcal{C}_U) of $O(d)$ (respectively, $U(d)$): $W \sim \mathcal{W} := \mathcal{U}(\mathcal{C})$. We consider two settings in which the sequence $s_{1:T}$ is first mapped to a new sequence $e_{1:T}$.

- Augmented Setting:** the tokens are defined as $e_t := (0, s_t, s_{t-1})$, aligning with the setup used by Von Oswald et al. (2023).
- Non-Augmented Setting:** the tokens are simply $e_t := s_t$.

Commutativity assumption. The matrices W commute. Hence, they are co-diagonalizable in a unitary basis of $\mathbb{C}^{d \times d}$. Up to a change of basis, we suppose $\mathcal{C}_U = \{\text{diag}(\lambda_1, \dots, \lambda_d), |\lambda_i| = 1\}$, $\mathcal{C}_O = \{(\lambda_1, \bar{\lambda}_1, \dots, \lambda_d, \bar{\lambda}_d), |\lambda_i| = 1\}$, with $d = 2\delta$.

Causal Linear Multi-Head Attention

We consider a model \mathcal{T}_θ involving Causal Linear Multi-Head Attention:

$$e_{1:T} \mapsto \left(\sum_{h=1}^H \sum_{t'=1}^t \mathcal{A}_{t,t'}^h \mathcal{B}^h e_{t'} \right)_{t \in \{1, \dots, T\}}. \quad (1)$$

\mathcal{A}^h is the attention matrix:

$$\mathcal{A}_{t,t'}^h = P_{t,t'} \langle \mathcal{A}^h e_t | e_{t'} \rangle.$$

with $P \in \mathbb{R}^{T_{\max} \times T_{\max}}$ is an optionally trainable positional encoding. The trainable parameters are $\theta = ((\mathcal{A}^h, \mathcal{B}^h)_{1 \leq h \leq H}, P)$

- We focus on the population loss, defined as:

$$\ell(\theta) := \sum_{T=2}^{T_{\max}} \mathbb{E}_{W \sim \mathcal{W}} \|\mathcal{T}_\theta(e_{1:T}) - s_{T+1}\|^2, \quad (2)$$

indicating the model's objective to predict s_{T+1} given $e_{1:T}$.

In-Context Autoregressive Learning

Contributions:

- Theoretically characterize θ^* that minimize ℓ .
- Discuss the convergence of gradient descent to these minima.
- Characterize the in-context autoregressive learning process of the model.

In-Context Autoregressive Learning

We say that \mathcal{T}_θ *learns autoregressively in-context* the AR process $s_{t+1} = Ws_t$ if $\mathcal{T}_\theta(e_{1:T})$ can be decomposed in two steps:

- First applying an in-context mapping $\gamma = \Gamma_\theta(e_{1:T})$
- Then using a prediction mapping $\mathcal{T}_\theta(e_{1:T}) = \psi_\gamma(e_{1:T})$. This prediction mapping should be of the form $\psi_\gamma(e_{1:T}) = \gamma s_\tau$ for some shift $\tau \in \{1, \dots, T\}$.

With such a factorization, in-context learning arises when the training loss $\ell(\theta^*)$ is small. This corresponds to having $\Gamma_\theta(e_{1:T}) \approx W^{T+1-T}$ when applied to data $e_{1:T}$ exactly generated by the AR process with matrix W .

In-Context Mapping with Gradient Descent

- Augmented tokens** $e_t := (0, s_t, s_{t-1})$ and $\mathcal{W} = \mathcal{U}(\mathcal{C}_U)$.
- Model** $\mathcal{T}_\theta(e_{1:T}) = (e_T + \sum_{t=1}^T \langle A e_t | e_t \rangle C B e_t)_{1:d}$.
- Parametrization:** we take A and B as

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & a_1 I & a_2 I \\ 0 & a_3 I & a_4 I \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & b_1 I & b_2 I \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Proposition (In-context autoregressive learning with gradient-descent)

Loss (2) is minimal for θ^* such that $a_1^* + a_4^* = a_2^* = b_2^* = 0$ and $a_3^* b_1^* = \frac{\sum_{t=2}^{T_{\max}} T}{\sum_{t=2}^{T_{\max}} (T+1)T}$. Furthermore, an optimal in-context mapping Γ_θ is one step of gradient descent on the loss $L(W, e_{1:T}) = \frac{1}{2} \sum_{t=1}^{T-1} \|s_{t+1} - Ws_t\|^2$ starting from the initialization $W = 0$, with a step size asymptotically equivalent to $\frac{3}{2T_{\max}}$ with respect to T_{\max} .

In-Context Mapping as a Geometric Relation

- Non-augmented tokens** $e_t := s_t$.

$$\text{Model } \mathcal{T}_\theta(e_{1:T}) = \sum_{h=1}^H \sum_{t=1}^T P_{T-1,t} \langle e_t | \mathcal{A}^h e_{T-1} \rangle \mathcal{B}^h e_t.$$

- Parametrization:** we take $A^h = \text{diag}(a_h)$ and $B^h = \text{diag}(b_h)$.

Then there exists A and $B \in \mathbb{R}^{H \times d}$ such that one has for $e_{1:T} = (1_d, \lambda, \dots, \lambda^{T-1})$:

$$\mathcal{T}_\theta(e_{1:T}) = \sum_{t=1}^T P_{T-1,t} [B^T A] \lambda^{t-T+1} \odot \lambda^{t-1}.$$

Proposition (Unitary optimal in-context mapping)

- Any $\theta^* = (A^*, B^*, P^*)$ achieving zero of the loss (2) satisfies $P_{T-1,t}^* = 0$ if $t \neq T$, $P_{T-1,T}^* (B^{*\top} A^*)_{ii} = 1$, and $(B^{*\top} A^*)_{ij} = 0$ for $i \neq j$. Therefore, one must have $H \geq d$. An optimal in-context mapping satisfies $\Gamma_\theta(e_{1:T}) = \bar{e}_{T-1} \odot e_T$ and the predictive mapping $\psi_\gamma(e_{1:T}) = \gamma \odot e_T$.
- Loss (2) reads $\ell(A, B, P) = \sum_{T=2}^{T_{\max}} l(B^T A, P_{T-1})$ with $l(C, p) = \|p\|_2^2 \|C\|_F^2 + p_{T-1}^2 S(C^\top C) - 2\text{Tr}(C)p_T + d$, where S is the sum of all coefficients operator.

- The equality $(B^T A)_{ij} = 0$ for $i \neq j$ corresponds to an orthogonality property between heads. When there are more than d heads, some can be pruned.
- Even for $T_{\max} = 2$ convergence of gradient descent in (A, B, P) on ℓ to a global minimum is an open problem (matrix factorization).

Proposition (Orthogonal optimal in-context mapping)

Any $\theta^* = (A^*, B^*, P^*)$ with $\ell(\theta^*) = 0$ in (2) satisfies, denoting $C^* = B^{*\top} A^*$ and $p^* = P_{T-1}^*$: $p_t^* = 0$ if $t < T-1$, $p_{T-1}^* = 1$, $p_{T-2}^* (C_{2i-1,2i-1}^* + C_{2i-1,2i-2}^* + C_{2i-2,2i-1}^*) p_{T-1}^* = 0$, $p_{T-2}^* C_{2i,2i-1}^* + (C_{2i,2i-1}^* + C_{2i-2,2i-1}^*) p_{T-1}^* = 0$, $C_{2i-1,j}^* = C_{2i,j}^* = 0$ for $j \neq 2i-1, 2i$. An optimal in-context mapping is then, for $e_t = \lambda^{t-1}$: $\Gamma_\theta(e_{1:T}) = \lambda^2$, and the corresponding predictive mapping $\psi_{\Gamma_\theta}(e_{1:T}) = \lambda^2 \odot e_{T-1} = \lambda^T$.

Interpretation: The relation implemented by Γ_θ is an extension of a known formula in trigonometry: $2 \cos \rho R_\rho - I_2 = R_{2\rho}$, with R_ρ the rotation of parameter ρ in \mathbb{R}^2 .

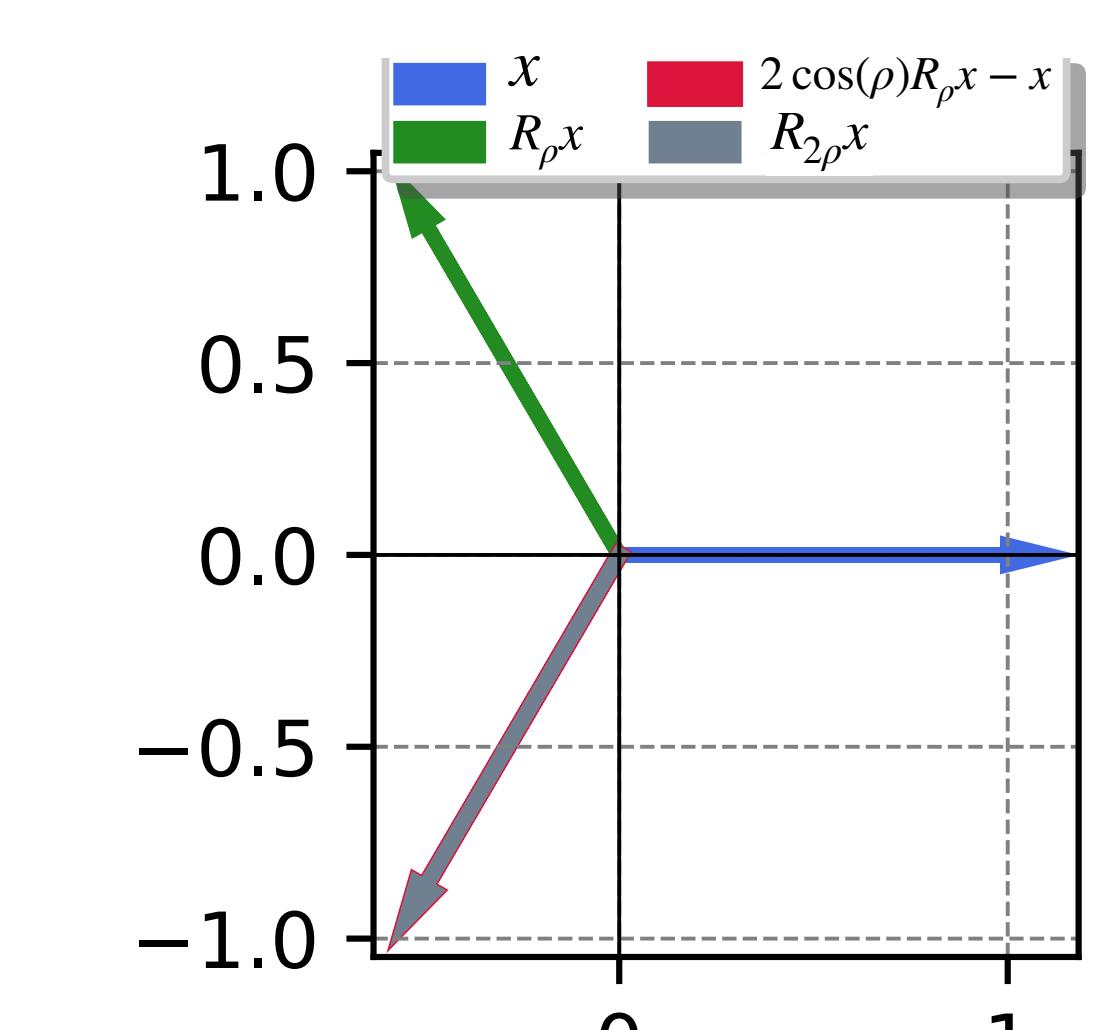


Figure 2: Trigonometric formula implemented by the Transformer in-context. The minima of the training loss correspond to implementing, up to multiplying factors: $2 \cos \rho R_\rho - I_2 = R_{2\rho}$.

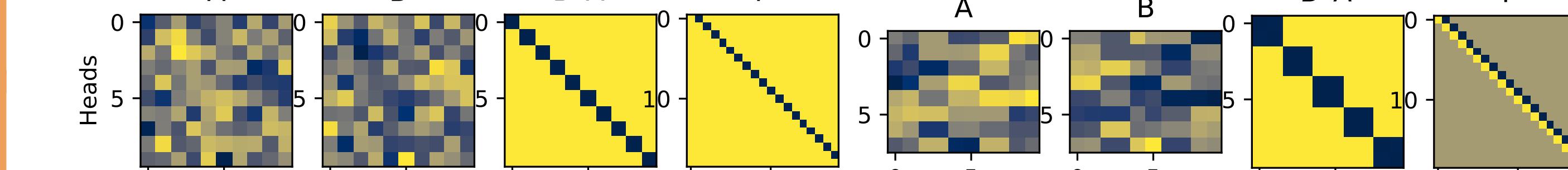


Figure 3: Matrices A , B , $B^T A$ and P after training on loss (2) with random initialization. Left: Unitary context case with $H = 10$. Right: Orthogonal context case, with $H = 8 < d$, which leads to low rank $B^T A$.

Change in the Context Distribution

- Goal:** Impact of the context distribution on the optimization landscape. We break the symmetry of the context distribution.
- Non-augmented tokens and $d = 1$:** $s_{t+1} = \lambda s_t$ for $|\lambda| = 1$. For $\mu \geq 1$ and $\rho \sim \mathcal{U}(0, 2\pi)$, we define $\lambda = e^{i\rho/\mu}$.
- Parametrization:** positional encoding-only attention, we take $B^T A = 1$.

Proposition (Conditioning)

The Hessian $H \in \mathbb{R}^{T \times T}$ of $l(p) := \mathbb{E}_{\lambda \sim \mathcal{W}(\mu)} \sum_{t=1}^T p_t \lambda^{2t-T} - \lambda^T$ is $H_{t,t'} = \frac{1}{4\pi(t-t')} \sin(4(t-t')\frac{\pi}{\mu})$.

With eigenvalues $\sigma_1(\mu) \geq \dots \geq \sigma_T(\mu)$, $\sigma_1(\mu) \rightarrow T$ and $\sigma_{T+1}(\mu) \rightarrow 0$ as $\mu \rightarrow +\infty$.

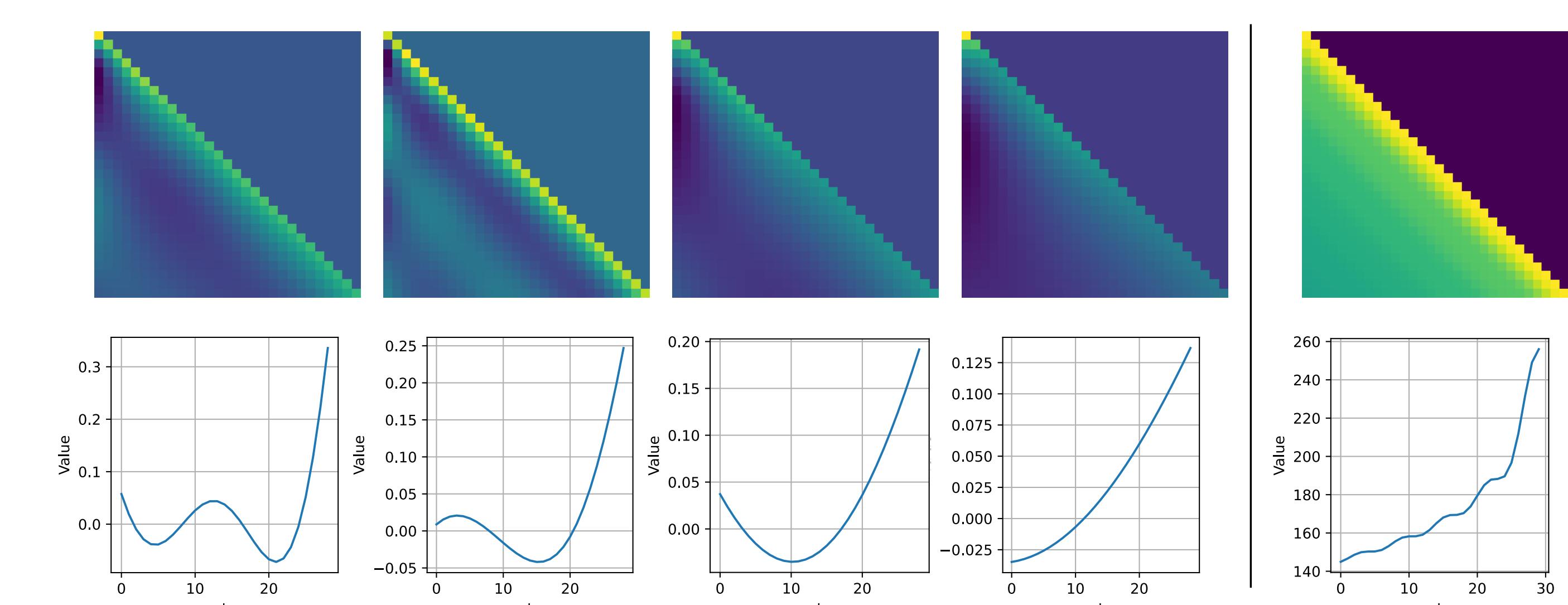


Figure 4: Left: Positional encodings after training for $\mu \in \{50, 100, 200, 300\}$. First row: P . Second row: plot of its last raw. Right: Comparison with cosine absolute PE used in machine translation.

Experiments

Validation of the token encoding choice.

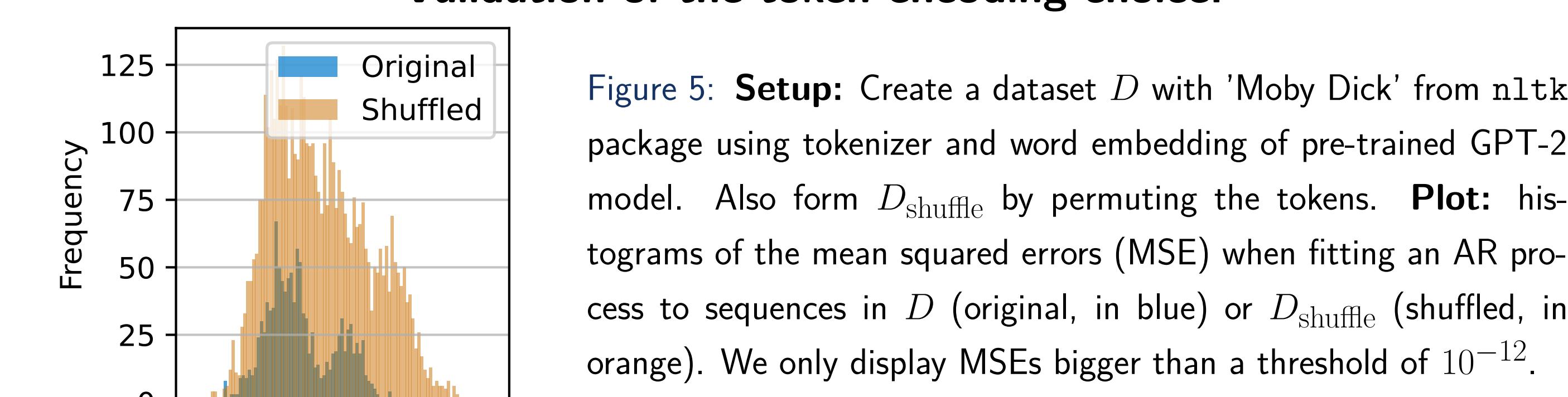
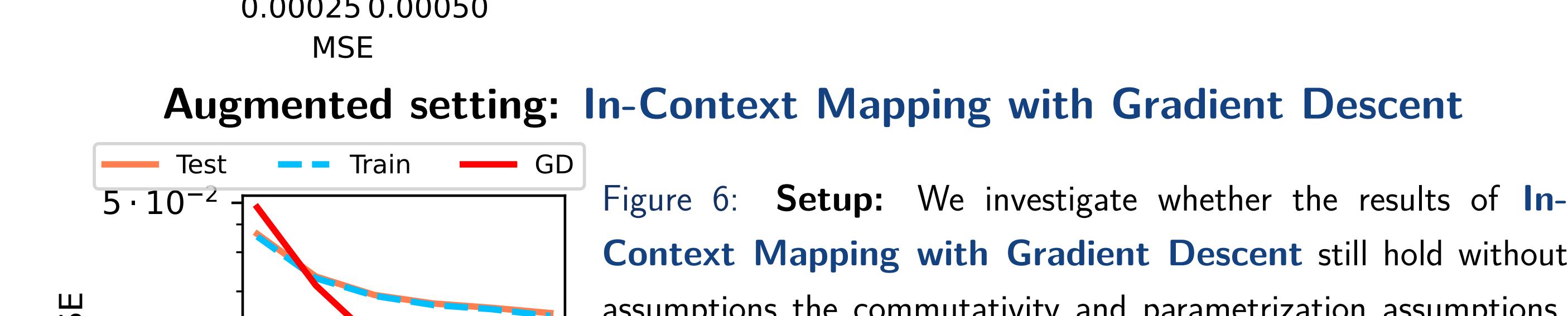
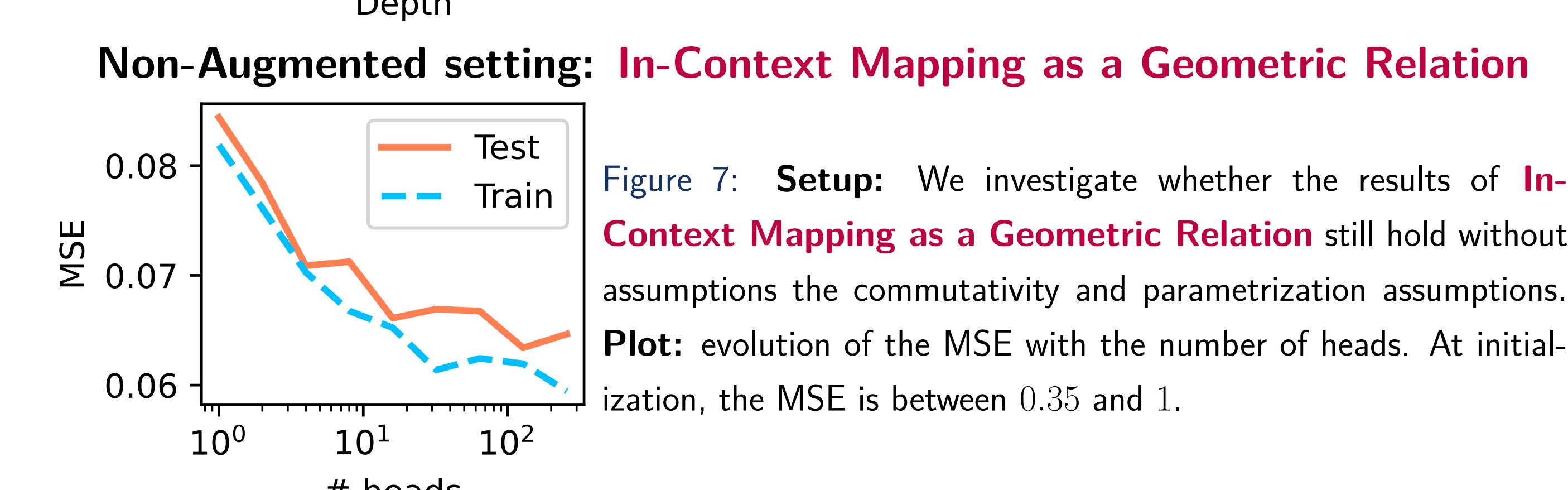


Figure 7: Setup: We investigate whether the results of In-Context Mapping as a Geometric Relation still hold without assumptions the commutativity and parametrization assumptions. Plot: evolution of the MSE with the number of heads. At initialization, the MSE is between 0.35 and 1.