

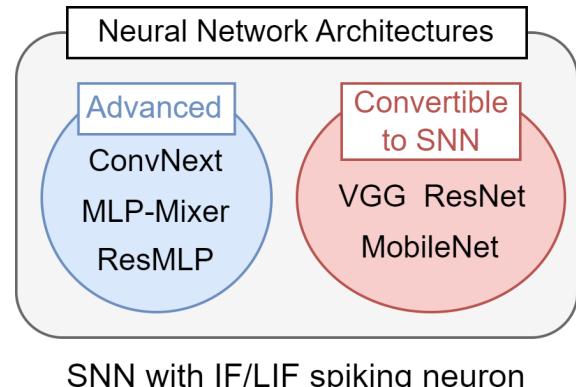
Sign Gradient Descent-based Neuronal Dynamics: ANN-to-SNN Conversion Beyond ReLU Network

Hyunseok Oh
Seoul National University
ohsai@snu.ac.kr

Youngki Lee
Seoul National University
youngkilee@snu.ac.kr

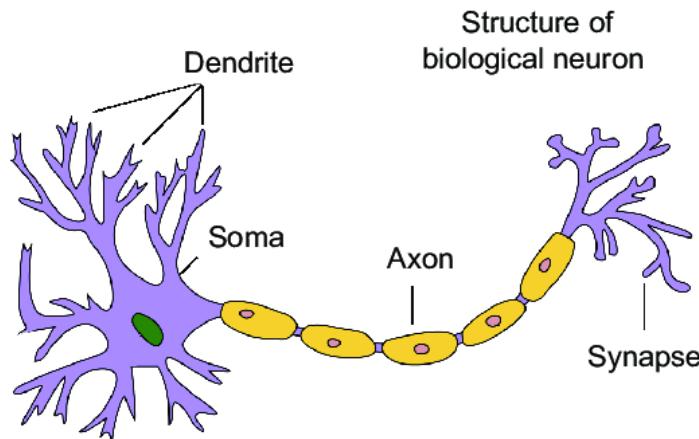
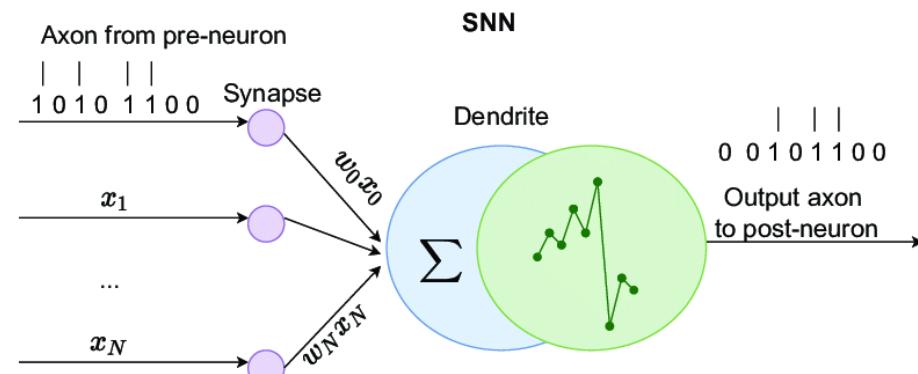
Motivation 1: Performance gap of SNN with SOTA DNNs

- SNN is significantly **energy-efficient** and **biologically plausible**, but it has a **noticeable performance gap** with **state-of-the-art DNNs**
 - Training SNN from scratch
 - Large performance gap with ANNs
 - ANN-to-SNN Conversion
 - Cannot convert nonlinear tensor operator besides ReLU



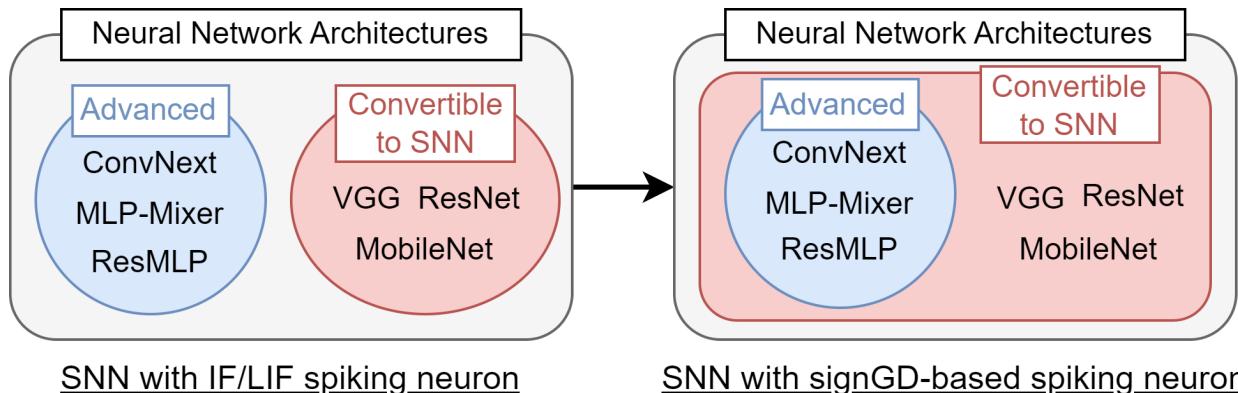
Motivation 2: Understanding Behavior of Spiking Neurons

- Which fundamental mathematical principle underlies the behavior of spiking neuron, a simplified model of biological neurons?

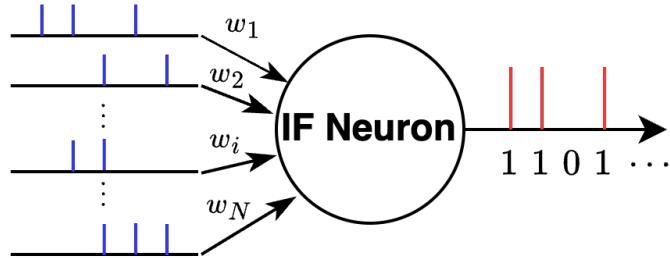


Key Contributions

- Mathematical Findings
 - Discrete Dynamics of Spiking Neurons (IF/LIF) are Sub-gradient Method
- Application
 - ANN-to-SNN Conversion Beyond ReLU Network



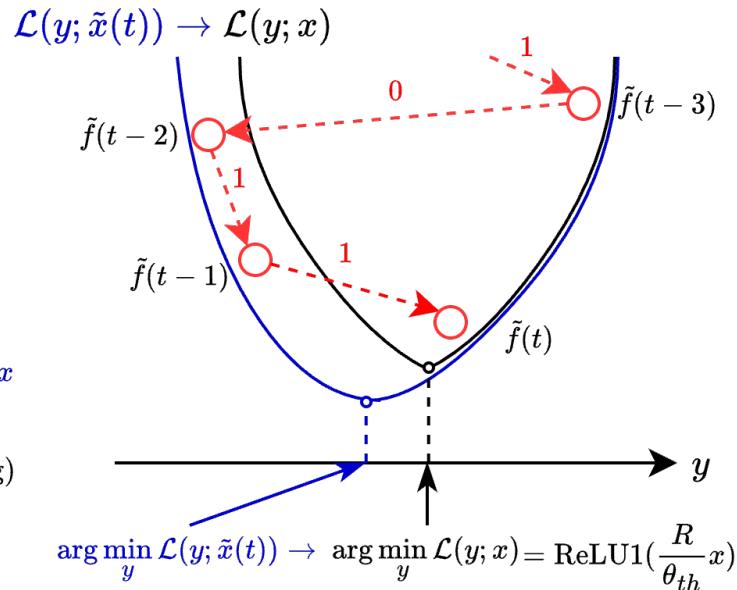
Theory: Discrete Dynamics of Simple Spiking Neuron Models are Sub-gradient Method



Input: $\tilde{x}(t) = \frac{t}{t+1} \tilde{x}(t-1) + \frac{1}{t} \sum_{i=1}^N I_i(t) \xrightarrow[t \rightarrow \infty]{} x$

Output: $y(t) = \frac{t}{t+1} y(t-1) + \frac{1}{t} s(t)$ (Rate coding)

$$\tilde{f}(t) = \frac{t}{t+1} y(t) - \frac{u(0) - \theta_{th}}{\theta_{th}(t+1)}$$



Discrete Neuronal Dynamics of IF Neuron \equiv Optimization Trajectory of Subgradient Method

Theory: Discrete Dynamics of Simple Spiking Neuron Models are Sub-gradient Method

Dynamics equivalence of IF neuron with sub-gradient method (Informal).

Dynamical system of **IF neuron** with rate-coded input $\tilde{x}(t)$ and output $y(t)$ is equivalent to the **sub-gradient method** with **diminishing step size** $\frac{1}{t+1}$ over an optimization problem $\min_{y \in \mathbb{R}} \mathcal{L}(y; x)$, approximated with $x \leftarrow \tilde{x}(t+1)$ as,

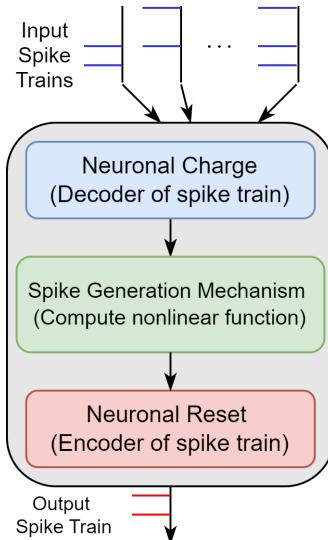
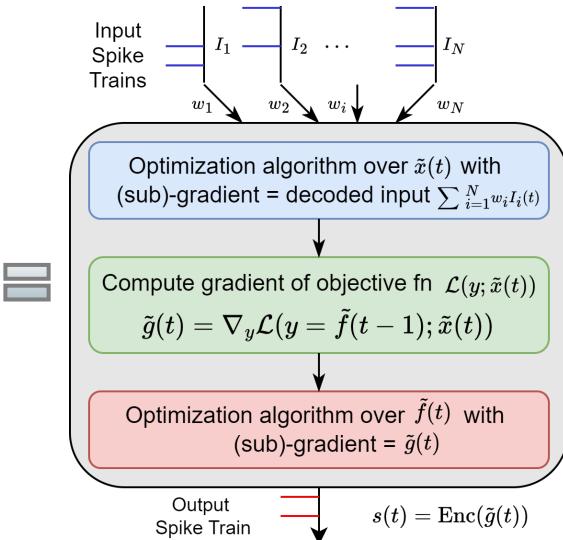
$$\tilde{f}(t) = \tilde{f}(t-1) - \frac{1}{t+1} \cdot \tilde{g}(\tilde{f}(t-1); \tilde{x}(t)) \quad (\text{sub-gradient method})$$

$$\mathcal{L}(y; x) = \text{ReLU}\left(\frac{R}{\theta_{th}}x - y\right) + \frac{1}{2}y^2 \quad (\text{objective function})$$

$$\tilde{f}(t) = \frac{t}{t+1}y(t) - \frac{u(0) - \theta_{th}}{\theta_{th}(t+1)} \quad (t\text{-th approximation from } y(t))$$

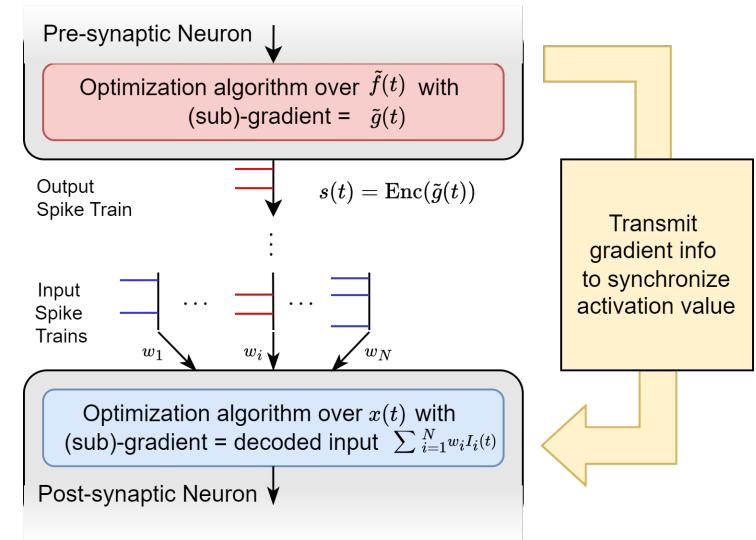
where $\tilde{g}(y; x)$ is a sub-gradient of $\mathcal{L}(y; x)$. Minimizer of the problem is $\text{ReLU1}\left(\frac{R}{\theta_{th}}x\right)$. (**LIF neuron** version is also on the paper)

Theory: Discrete Dynamics of Simple Spiking Neuron Models are Sub-gradient Method



Sequential stages of neuronal dynamics

Optimization-theoretic interpretation of dynamics stages

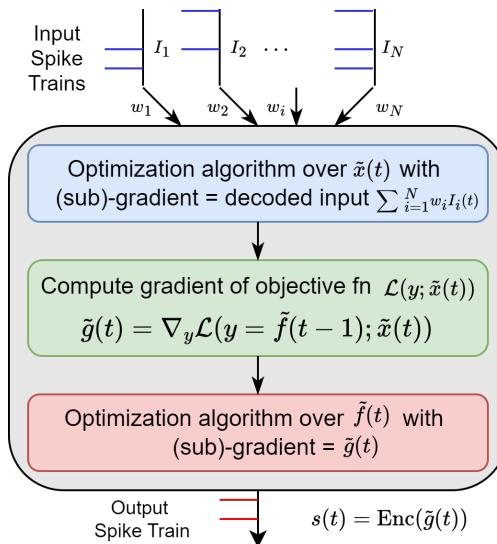


A spike train synchronizes an activation value between pre- and post-synaptic neuron

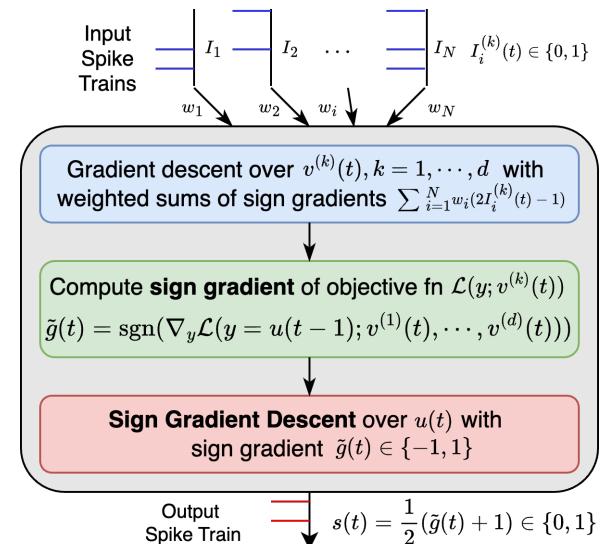
Application: ANN-to-SNN Conversion Beyond ReLU Network

➤ Sign gradient descent(signGD)-based neuronal dynamics

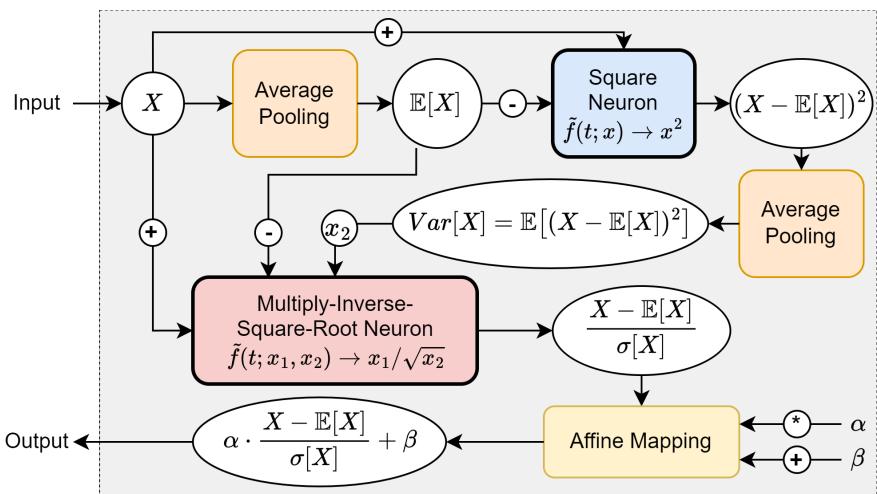
1. signGD instead of sub-gradient method to design neuronal dynamics.
2. Generalize LR schedule of optimizer form of neuronal dynamics



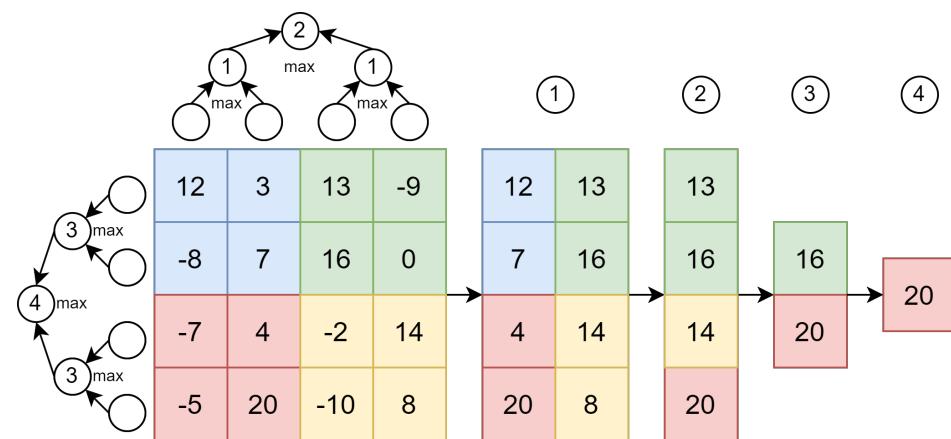
Optimization-theoretically
extended design



Application: ANN-to-SNN Conversion Beyond ReLU Network



Layer Normalization computation
with signGD-based neurons



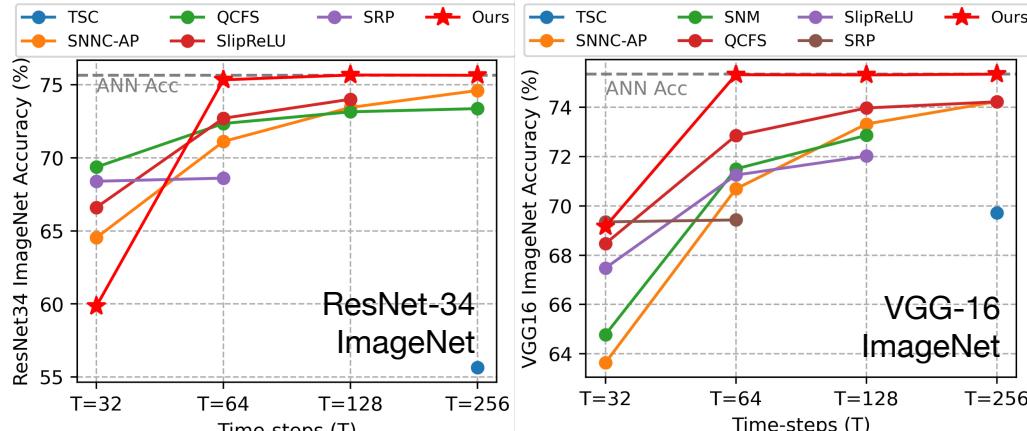
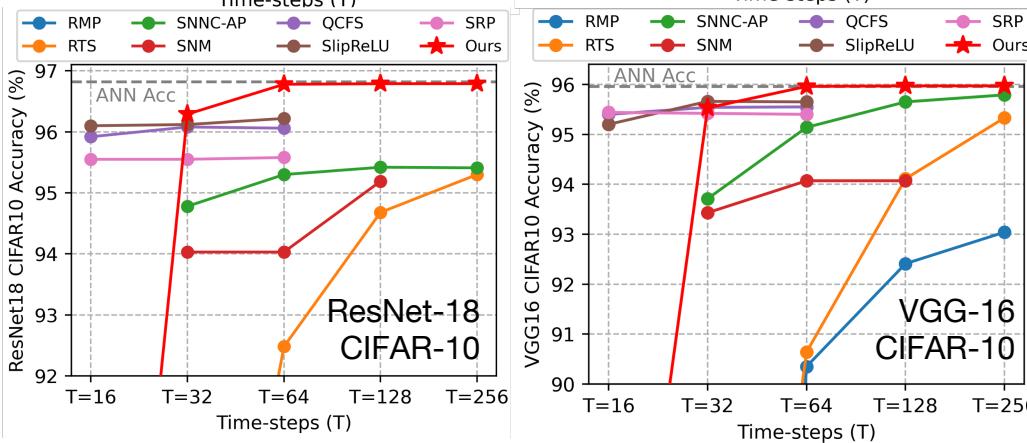
4x4 Max pooling with signGD-based neuron
of binary-input maximum operator

Evaluation: Converting Novel DNN Architectures

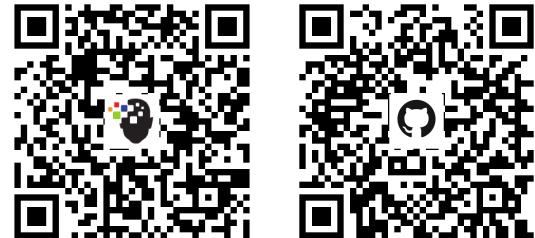
- ConvNext, MLP-Mixer (**LayerNorm + GELU** support)
- ResMLP (**GELU** support)
- VGG16, ResNet34 (**Exact Max Pooling** Support)

Converted DNN Models	ANN Acc.	SNN Simulation time-steps			
		T = 32	T = 64	T = 128	T = 256
ConvNext-B	84.06	0.11	5.07	72.60	81.07
MLP-Mixer-B32	76.59	0.11	0.35	50.06	72.97
ResMLP-S24	80.76	72.94	76.91	77.99	78.04
RegNetX-3.2GF	81.19	26.85	77.74	80.93	80.99
VGG16 (MaxPool2D)	73.36	38.08	67.04	71.33	71.50
ResNet34 (MaxPool2D)	73.30	58.09	72.38	73.31	73.29

Evaluation: Performance Comparison with Prior Works



Summary



- We mathematically prove that **discrete neuronal dynamics of IF/LIF spiking neuron models** are equivalent to optimization dynamics of **sub-gradient method**
- We extend the theory to design **a new spiking neuron model** that can approximate **arbitrary nonlinear ops.**
- With our neuron, we expand **ANN-to-SNN conversion beyond ReLU networks**, e.g., ConvNext, MLP-Mixer.