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Motivation 1: Performance gap of SNN with SOTA DNNs

» SNN is significantly energy-efficient and biologically plausible, but

it has a noticeable performance gap with state-of-the-art DNNs
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» Large performance gap with ANNs

» ANN-to-SNN Conversion - /

SNN with IF/LIF spiking_neuron

» Cannot convert nonlinear tensor operator besides RelLU



Motivation 2: Understanding Behavior of Spiking Neurons

» Which fundamental mathematical principle underlies the behavior

of spiking neuron, a simplified model of biological neurons?
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Yamazaki, Kashu & Vo, Khoa & Bulsara, Darshan & Le, Ngan. (2022). Spiking Neural Networks and Their Applications: A Review. Brain sciences. 12.
10.3390/brainsci12070863.



Key Contributions
» Mathematical Findings
» Discrete Dynamics of Spiking Neurons (IF/LIF) are Sub-gradient Method
» Application
» ANN-to-SNN Conversion Beyond ReLU Network
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Theory: Discrete Dynamics of Simple
Spiking Neuron Models are Sub-gradient Method
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Discrete Neuronal Dynamics of IF Neuron = Optimization Trajectory of Subgradient Method




Theory: Discrete Dynamics of Simple
Spiking Neuron Models are Sub-gradient Method

Dynamics equivalence of IF neuron with sub-gradient method (Informal).

Dynamical system of IF neuron with rate-coded input X(t) and output y(t) is
equivalent to the sub-gradient method with diminishing step size —1- over

t+1

an optimization problem miny,cr £(y; x), approximated with x < X(t + 1) as,
F(t) = F(t— 1) — ?11 & (F(t— 1): %)) ol iz meihed)
L(y;x) = ReLU(eﬂx —y)+ %yz (objective function)
f(t) = y( ) — ;fl?()t _+_01t; (t-th approximation from y(t))

where g(y; x) is a sub-gradient of L(y; x). Minimizer of the problem is
ReLUl(e—’fhx). (LIF neuron version is also on the paper)



Theory: Discrete Dynamics of Simple
Spiking Neuron Models are Sub-gradient Method
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Application: ANN-to-SNN Conversion Beyond ReLU Network

> Sign gradient descent(signGD)-based neuronal dynamics
1. signGD instead of sub-gradient method to design neuronal dynamics.

2. Generalize LR schedule of optimizer form of neuronal dynamics
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Application: ANN-to-SNN Conversion Beyond ReLU Network
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Evaluation: Converting Novel DNN Architectures

» ConvNext, MLP-Mixer (LayerNorm + GELU support)

» ResMLP (GELU support)

» VGG16, ResNet34 (Exact Max Pooling Support)

SNN Simulation time-steps

Converted DNN Models ANN Acc. T=32 T=64 T=128 T=256
ConvNext-B 84.06 0.11 5.07 72.60 81.07
MLP-Mixer-B32 76.59 0.11 0.35 50.06 72.97
ResMLP-S24 80.76 72.94 76.91 77.99 78.04
RegNetX-3.2GF 81.19 26.85 77.74 80.93 80.99
VGG16 (MaxPool2D) 73.36 38.08 67.04 71.33 71.50
ResNet34 (MaxPool2D) 73.30 58.09 72.38 73.31 73.29




Evaluation: Performance Comparison with Prior Works
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Summary

e We mathematically prove that discrete neuronal dynamics of IF/LIF
spiking neuron models are equivalent to optimization dynamics of
sub-gradient method

e \We extend the theory to design a new spiking neuron model that
can approximate arbitrary nonlinear ops.

e With our neuron, we expand ANN-to-SNN conversion beyond

ReLU networks, e.g., ConvNext, MLP-Mixer.



