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Problem & Motivation

Method
Uncertainty

quality
Robustness
quality

Test-time
efficiency

Without prior
requirement

Deterministic ✗ ✗ ✓ ✓
Bayesian ✓ ✗ ✓ ✗
Ensembles ✓ ✓ ✗ ✓

Ours ✓ ✓ ✓ ✓

Table: Comparison in uncertainty, robustness quality, test-time efficiency (lightweight & fast), and whether
pre-defined prior hyper-parameters are required.

Deterministic DNN is often non-robust & over-confident, Bayesian NN additionally requires pre-defined
prior hyperparams, and Ensembles suffers from high storage & slow speed in inference (test-time).

Density-Softmax: leverages the density function built on a Lipschitz-constrained feature extractor with the
softmax layer for better uncertainty estimation, robustness, and fast inference.
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Density-Softmax: Setting

Softmax

Figure: Architecture includes encoder f , regressor g , and density function p(Z ;α).

Setting. Consider we predict a target label y ∈ Y, where Y is discrete with K possible categories by using a
forecast h = σ(g ◦ f ), which composites a feature extractor f : X → Z, a classifier g : Z → RK , and a softmax

layer σ : RK → ∆y which outputs a probability distribution W (y) : Y → [0, 1] within the set ∆y over Y.
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Density-Softmax

Robustness. Optimize h by using ERM and gradient-penalty regularization from training data Ds by solving

min
θg,f

{E(x,y)∼Ds [−y log (σ(g(f (x)))) + λ(||∇x f (x)||2 − 1)2]}, (1)

where θg,f is the parameter of encoder f and classifier g , λ is the gradient-penalty coefficient, and ||∇x f (x)||2
is the Spectral norm of the Jacobian matrix ∇x f (x).

Remark 1. The gradient-penalty enforces supx∈Rn ||∇x f (x)||2 = 1, suggests f (x) satisfy ||f (x1) − f (x2)||2 ≤
||x1 − x2||2. This 1-Lipstchiz f (x) is proved to be robust on corruptions by the Local Robustness Certificates.

Uncertainty. Integrate density function p(Z ;α) with classifier g by

p(y = i|xt) =
exp(p(zt ;α) · (z⊤t θgi ))∑K
j=1 exp(p(zt ;α) · (z⊤t θgj ))

, ∀i ∈ Y, (2)

where zt = f (xt) is the feature of test sample xt .

Softmax

Figure: Architecture includes encoder f , regressor
g , and density function p(Z ;α).

Algorithm 1 Sketch Algorithm

1: Train-time:
2: Pre-train h by ERM and gradient-penalty regularization

in Eq. 1.
3: Freeze f , then estimate p(z;α) on feature space Z.
4: Re-update g by ERM in Eq. 1 with p(z;α).

5: Test-time:
6: Infer ŷt for xt by Eq. 2 with only a single forward pass.
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g , and density function p(Z ;α).

Algorithm 2 Sketch Algorithm

1: Train-time:
2: Pre-train h by ERM and gradient-penalty regularization

in Eq. 1.
3: Freeze f , then estimate p(z;α) on feature space Z.
4: Re-update g by ERM in Eq. 1 with p(z;α).

5: Test-time:
6: Infer ŷt for xt by Eq. 2 with only a single forward pass.
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Figure: Feature visualizations between models w/o & w 1-Lipschitz constraint (2 lefts), reliability diagrams
between models w/o & w the density-function (2 rights).
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Theoretical results

Theorem 1. Density-Softmax’s prediction is the optimal solution of the minimax uncertainty risk, i.e., σ(p(f (X );α)·
g(f (X )) = arg inf

P(Y |X )∈P

[
supP∗(Y |X )∈P∗ S(P(Y |X ), P∗(Y |X ))

]
.

Theorem 2. The predictive distribution of Density-Softmax σ(p(z = f (x);α) · (g ◦ f (x))) is distance aware
on the feature space Z, i.e., ∃ a summary statistic u(zt) of σ(p(zt ;α) · (g ◦ zt)) on the new test feature
zt = f (xt) s.t., u(zt) = v(d(zt , Zs )), where v is a monotonic function and d(zt , Zs ) = E ∥zt − Zs∥Z is the
distance between zt and the training features random variable Zs .

Remark 2. When the likelihood of p(Z ;α) is high, our model is certain on IID data, and when the likeli-
hood of p(Z ;α) decreases on OOD data, the certainty will decrease correspondingly, · · ·

Figure: Density-Softmax achieves distance awareness, has confident predictions on IID data for positive
(Orange) and negative classes (Blue), and decreases certainty to a uniform class probability when OOD data is
far from the training set.
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distance between zt and the training features random variable Zs .

Remark 2. When the likelihood of p(Z ;α) is high, our model is certain on IID data, and when the likeli-
hood of p(Z ;α) decreases on OOD data, the certainty will decrease correspondingly, · · · improving calibration
of the standard softmax by reducing its over-confidence as follows:

Proposition 1. If the predictive distribution of the standard softmax σ(g◦f ) makes acc(Bm) ≤ conf(Bm), ∀Bm,m ∈
[M], where Bm is the set of sample indices whose confidence falls into

(
m−1
M , m

M

]
in M bins, then Density-Softmax

σ((p(f ;α) · g) ◦ f ) can improve calibrated-uncertainty by ECE(σ((p(f ;α) · g) ◦ f ) ≤ ECE(σ(g ◦ f )).
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Empirical results

Density-Softmax achieves a competitive robust generalization and uncertainty estimation performance with
SOTA across different datasets and modern DNN architectures.
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Figure: Benchmark performance on CIFAR-10 with Wide Resnet-28-10.

Method NLL(↓) Acc(↑) ECE(↓) cNLL(↓) cAcc(↑) cECE(↓) AUPR-S(↑) AUPR-C(↑)

Rank-1 BNN 0.692 81.3 0.018 2.24 53.8 0.117 0.884 0.797
SNGP 0.805 80.2 0.020 2.02 54.6 0.092 0.923 0.801
Deep Ensembles 0.666 82.7 0.021 2.27 54.1 0.138 0.888 0.780
Density-Softmax 0.780 80.8 0.038 1.96 54.7 0.089 0.910 0.804

Table: Results for Wide Resnet-28-10 on CIFAR-100.

Method NLL(↓) Acc(↑) ECE(↓) cNLL(↓) cAcc(↑) cECE(↓) #Params(↓) Latency(↓)

Deterministic ERM 0.939 76.2 0.032 3.21 40.5 0.103 25.61M 299.81
Rank-1 BNN 0.886 77.3 0.017 2.95 42.9 0.054 26.35M 690.14
Heteroscedastic 0.898 77.5 0.033 3.20 42.4 0.111 58.39M 337.50
SNGP 0.931 76.1 0.013 3.03 41.1 0.045 26.60M 606.11
MIMO 0.887 77.5 0.037 3.03 43.3 0.106 27.67M 367.17
BatchEnsemble 0.922 76.8 0.037 3.09 41.9 0.089 25.82M 696.81
Deep Ensembles 0.857 77.9 0.017 2.82 44.9 0.047 102.44M 701.34
Density-Softmax 0.885 77.5 0.019 2.81 44.6 0.042 25.88M 299.90

Table: Results for Resnet-50 on ImageNet.

Ha Manh Bui (JHU) Density-Softmax ICML 2024 12 / 15



Empirical results

Importantly, our method has fewer parameters and is much faster than other baselines.
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Figure: Storage requirement & inference cost comparison at test time (2 lefts); Histogram of p(z;α)’s
likelihood, train on CIFAR-10, test on CIFAR-10-C.
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Summary

Contributions:

Introduce Density-Softmax, a reliable, sampling-free, and single DNN framework via a direct combination
of a density function built on a Lipschitz-constrained feature extractor with the softmax layer. It is fast &
lightweight and can be implemented efficiently and easily across DNN architectures.

Formally prove that our model is the solution to the minimax uncertainty risk, distance awareness on the
feature space, and can reduce over-confidence of the standard softmax when the test feature is far from
the training set.

Empirically shows it achieves robust generalization and uncertainty estimation performance with SOTA
across different datasets and modern DNN architectures. Importantly, it has fewer parameters and is much
faster than other baselines at test time.

For more information:

PDF, code available at https://openreview.net/forum?id=lon750Kf7n

Come see our poster!

See you at the ICML 2024 conference!
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