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Problem & Motivation

Uncertainty  Robustness  Test-time  Without prior
Method N X - .
quality quality efficiency requirement
Deterministic X X v v
Bayesian v X v X
Ensembles v v X v
Ours v v v v

Table: Comparison in uncertainty, robustness quality, test-time efficiency (lightweight & fast), and whether
pre-defined prior hyper-parameters are required.

@ Deterministic DNN is often non-robust & over-confident, Bayesian NN additionally requires pre-defined
prior hyperparams, and Ensembles suffers from high storage & slow speed in inference (test-time).
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Uncertainty  Robustness  Test-time  Without prior

Method quality quality efficiency requirement
Deterministic X X v v
Bayesian v X v X
Ensembles v v X v
Ours v v v v

Table: Comparison in uncertainty, robustness quality, test-time efficiency (lightweight & fast), and whether
pre-defined prior hyper-parameters are required.

@ Deterministic DNN is often non-robust & over-confident, Bayesian NN additionally requires pre-defined
prior hyperparams, and Ensembles suffers from high storage & slow speed in inference (test-time).

@ Density-Softmax: leverages the density function built on a Lipschitz-constrained feature extractor with the
softmax layer for better uncertainty estimation, robustness, and fast inference.
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Density-Softmax: Setting

()

Figure: Architecture includes encoder f, regressor g, and density function p(Z; c).

Setting. Consider we predict a target label y € ), where ) is discrete with K possible categories by using a
forecast h = o(g o f), which composites a feature extractor f : X — Z, a classifier g : Z — R", and a softmax

layer o : R — A, which outputs a probability distribution W(y) : ) — [0, 1] within the set A, over Y.
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Density-Softmax

Robustness. Optimize h by using ERM and gradient-penalty regularization from training data Ds by solving

Gn;ir:_{]E(x,y)ers[_y log (o(g(F(x)))) + M| Vxf ()| |2 = 1)°]}, ®

where 6, ¢ is the parameter of encoder f and classifier g, X is the gradient-penalty coefficient, and ||V f(x)||2
is the Spectral norm of the Jacobian matrix V,f(x).
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where 6, ¢ is the parameter of encoder f and classifier g, X is the gradient-penalty coefficient, and ||V f(x)||2
is the Spectral norm of the Jacobian matrix V,f(x).

Remark 1. The gradient-penalty enforces sup,cgn || Vxf(x)||2 = 1, suggests f(x) satisfy ||f(x1) — f(x2)|]2 <
||[x1 — x2||2. This 1-Lipstchiz f(x) is proved to be robust on corruptions by the Local Robustness Certificates.
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en;ir:_{]E(x,y)'vDS[_y log (o/(g(F(x)))) + M|V (x)ll2 = 1)°]}, ®

where 6, ¢ is the parameter of encoder f and classifier g, X is the gradient-penalty coefficient, and ||V f(x)||2
is the Spectral norm of the Jacobian matrix V,f(x).

Remark 1. The gradient-penalty enforces sup,cgn || Vxf(x)||2 = 1, suggests f(x) satisfy ||f(x1) — f(x2)|]2 <
||[x1 — x2||2. This 1-Lipstchiz f(x) is proved to be robust on corruptions by the Local Robustness Certificates.

Uncertainty. Integrate density function p(Z; o) with classifier g by

exp(p(ze; @) - (2, 0g,))
S exp(p(zi @) - (2] 6g))

where z; = f(x;) is the feature of test sample x;.

ply = ilx) = vViey, (2)
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where 6, ¢ is the parameter of encoder f and classifier g, X is the gradient-penalty coefficient, and ||V f(x)||2
is the Spectral norm of the Jacobian matrix V,f(x).

Remark 1. The gradient-penalty enforces sup,cgn || Vxf(x)||2 = 1, suggests f(x) satisfy ||f(x1) — f(x2)|]2 <
||[x1 — x2||2. This 1-Lipstchiz f(x) is proved to be robust on corruptions by the Local Robustness Certificates.

Uncertainty. Integrate density function p(Z; o) with classifier g by

exp(p(z:; @) - (2, 0g,))

S exp(p(zi @) - (thagJ.))’Vi €y, @)

ply = ilx) =

where z; = f(x;) is the feature of test sample x;.

Algorithm 4 Sketch Algorithm

XZm?aX_'Y 1: Train-time:

Pre-train h by ERM and gradient-penalty regularization

-p(z:u) : in Eq. 1.

Freeze f, then estimate p(z; ) on feature space Z.
Re-update g by ERM in Eq. 1 with p(z; ).

. Test-time:

Infer y; for x; by Eq. 2 with only a single forward pass.

)

Figure: Architecture includes encoder f, regressor
g, and density function p(Z; ).
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Density-Softmax

Robustness. Optimize h by using ERM and gradient-penalty regularization from training data Ds by solving
g‘ir;{E(x,y)/vDs [~y log (o(g(F(x)))) + AU VxF(X)]l2 — 1)}, 1)
g,

where 0, f is the parameter of encoder f and classifier g, A is the gradient-penalty coefficient, and ||V, f(x)]|2
is the Spectral norm of the Jacobian matrix V,f(x).

Remark 1. The gradient-penalty enforces sup, cgn ||Vxf(x)|[2 = 1, suggests f(x) satisfy ||f(x1) — F(>x2)|]2 <
||x1 — x2||2. This 1-Lipstchiz f(x) is proved to be robust on corruptions by the Local Robustness Certificates.

Uncertainty. Integrate density function p(Z; o) with classifier g by

exp(p(ze; @) - (2, 0g,))

ply = ilx) = =% Viey, (2)
Sk exp(p(zs a) - (2, 6g))
where z: = f(x;) is the feature of test sample x;.
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Figure: Feature visualizations between models w/o & w 1-Lipschitz constraint (2 lefts), reliability diagrams
between models w/o & w the density-function (2 rights).
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Theoretical results

Theorem 1. Density-Softmax’s prediction is the optimal solution of the minimax uncertainty risk, i.e., o(p(f(X); )
g(f(X) = arginf [supp«(y x)em= SB(YIX), P*(Y]X))].

P(Y|X)EP
Theorem 2. The predictive distribution of Density-Softmax o(p(z = f(x); @) - (g o f(x))) is distance aware
on the feature space Z, i.e., 3 a summary statistic u(z;) of o(p(z:; ) - (g © 2z:)) on the new test feature
zr = f(x¢) s.t., u(z:) = v(d(z:, Z)), where v is a monotonic function and d(z;, Zs) = E ||z: — Z|| ; is the
distance between z; and the training features random variable Z;.
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Theorem 1. Density-Softmax’s prediction is the optimal solution of the minimax uncertainty risk, i.e., o(p(f(X); )
g(f(X) = arginf [supp«(y x)em= SB(YIX), P*(Y]X))].
B(Y|X)eP
Theorem 2. The predictive distribution of Density-Softmax o(p(z = f(x); @) - (g o f(x))) is distance aware
on the feature space Z, i.e., 3 a summary statistic u(z;) of o(p(z:; ) - (g © 2z:)) on the new test feature
= f(xt) s.t., u(z:) = v(d(z:, Zs)), where v is a monotonic function and d(z;, Zs) = E ||z: — Zs|| ; is the
distance between z; and the training features random variable Z;.

Remark 2. When the likelihood of p(Z; «) is high, our model is certain on IID data, and when the likeli-
hood of p(Z; ) decreases on OOD data, the certainty will decrease correspondingly, - - -

MC Dropout Rank-1 BNN Ensemble B | Dens\ty Softmax

Density Softmax_

'&

Figure: Density- Softmax achleves dlstance awareness, has confident predlctlons on IID data for positive
(Orange) and negative classes (Blue), and decreases certainty to a uniform class probability when OOD data is
far from the training set.
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Theoretical results

Theorem 1. Density-Softmax’s prediction is the optimal solution of the minimax uncertainty risk, i.e., o(p(f(X); )
g(f(X)) = arginf [supw(y‘x)ep* S(IP’(Y\X),]P’*(Y|X))].

B(Y|X)eP

Theorem 2. The predictive distribution of Density-Softmax o(p(z = f(x); @) - (g o f(x))) is distance aware
on the feature space Z, i.e., 3 a summary statistic u(z;) of o(p(z:; ) - (g © 2z:)) on the new test feature
zr = f(x¢) s.t., u(z:) = v(d(z:, Z)), where v is a monotonic function and d(z;, Zs) = E ||z: — Z|| ; is the
distance between z; and the training features random variable Z;.

Remark 2. When the likelihood of p(Z; «) is high, our model is certain on IID data, and when the likeli-
hood of p(Z; a) decreases on OOD data, the certainty will decrease correspondingly, - - - improving calibration
of the standard softmax by reducing its over-confidence as follows:

Proposition 1. If the predictive distribution of the standard softmax o (gof) makes acc(B,) < conf(Bm), VBm, m €
m—1 m

== H} in M bins, then Density-Softmax

[M], where B, is the set of sample indices whose confidence falls into ( 77
f;a)-g)of) < ECE(c(gof)).

o((p(f; ) - g) o f) can improve calibrated-uncertainty by ECE(o ((p(

Ha Manh Bui (JHU) ICML 2024 11/15



Empirical results

Density-Softmax achieves a competitive robust generalization and uncertainty estimation performance with
SOTA across different datasets and modern DNN architectures.
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Figure: Benchmark performance on CIFAR-10 with Wide Resnet-28-10.

Method NLL(}) Acc(f) ECE(}) cNLL(}) cAcc(f) cECE(}) AUPR-S(1) AUPR-C(1)
Rank-1 BNN 0.692 813 0.018 2.24 53.8 0.117 0.884 0797
SNGP 0.805 80.2 0.020 2,02 54.6 0.092 0.923 0.801
Deep Ensembles __0.666 82.7 0.021 2.27 54.1 0.138 0.888 0.780
Density-Softmax___0.780 80.8 0.038 1.96 54.7 0.089 0.910 0.804
Table: Results for Wide Resnet-28-10 on CIFAR-100.
Method NLL())  Acc(f) ECE(l) cNLL(l) cAcc(t) cECE(J) #Params(l) Latency(l)
Deterministic ERM  0.939 76.2 0.032 321 405 0.103 25.61M 299.81
Rank-1 BNN 0.836 773 0.017 2.95 42.9 0.054 26.35M 690.14
Heteroscedastic 0.898 775 0.033 320 424 0.111 58.30M 337.50
SNGP 0.931 76.1 0.013 3.03 411 0.045 26.60M 606.11
MIMO 0.887 775 0.037 3.03 433 0.106 27.67TM 367.17
BatchEnsemble 0.922 76.8 0.037 3.09 419 0.089 25.82M 696.81
Deep Ensembles 0.857 77.9 0.017 2.82 44.9 0.047 102.44M 701.34

Density-Softmax 0.885 77.5 0.019 2.81 44.6 0.042 25.88M 299.90
Table: Results for Resnet-50 on ImageNet.
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Empirical results

Importantly, our method has fewer parameters and is much faster than other baselines.
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Figure: Storage requirement & inference cost comparison at test time (2 lefts); Histogram of p(z; )'s

likelihood, train on CIFAR-10, test on CIFAR-10-C.
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Summary

Contributions:

@ Introduce Density-Softmax, a reliable, sampling-free, and single DNN framework via a direct combination
of a density function built on a Lipschitz-constrained feature extractor with the softmax layer. It is fast &
lightweight and can be implemented efficiently and easily across DNN architectures.

@ Formally prove that our model is the solution to the minimax uncertainty risk, distance awareness on the
feature space, and can reduce over-confidence of the standard softmax when the test feature is far from
the training set.

@ Empirically shows it achieves robust generalization and uncertainty estimation performance with SOTA
across different datasets and modern DNN architectures. Importantly, it has fewer parameters and is much
faster than other baselines at test time.

For more information:
@ PDF, code available at https://openreview.net/forum?id=lon750Kf7n

@ Come see our poster!

See you at the ICML 2024 conference!
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