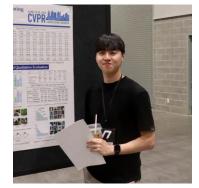
DistiLLM: Towards Streamlined Distillation for Large Language Models

ICML 2024

Jongwoo Ko KAIST AI



Sungnyun Kim KAIST AI

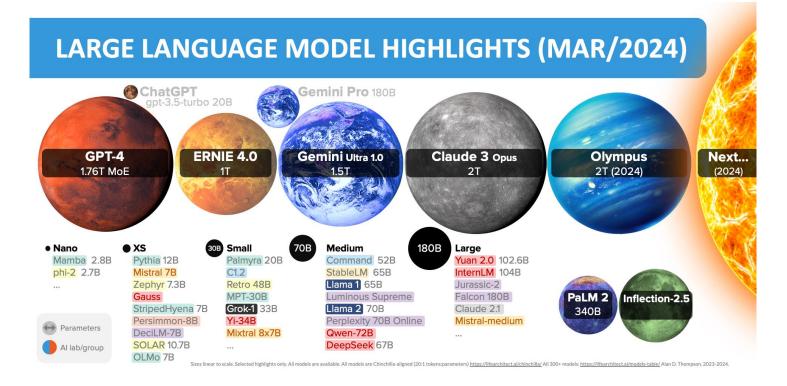
Tianyi Chen

Microsoft

Se-Young Yun KAIST AI

Large Language Models

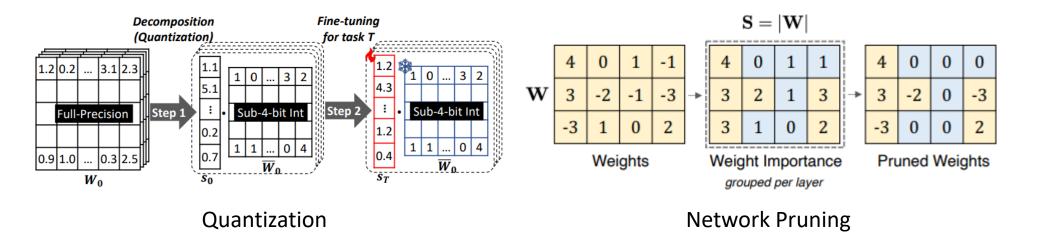
- LLMs have significantly improved the quality of generation
- Attributed to the increased scale of training data and model parameters.
- Higher inference costs or large memory footprints



[LifeArchitect.ai/models] ²

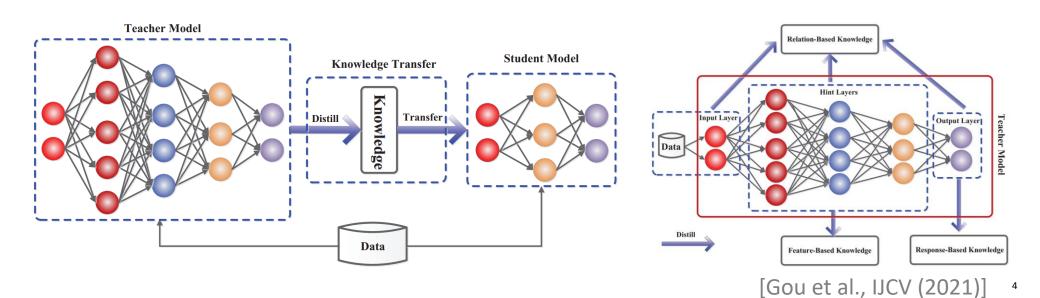
LLM Compressions

- Graduate School of Al
- Necessity of reducing the demands on computational resources becomes important
- Quantization: Making weights and activation into low-bit integers (i.e., 3-bit, 4-bit)
- Network Pruning: Remove redundant units (i.e., neuron, head, block) of network
- Knowledge Distillation: building small student models that can mimic larger model
- Inference Acceleration, Mixture-Of-Expert, ...



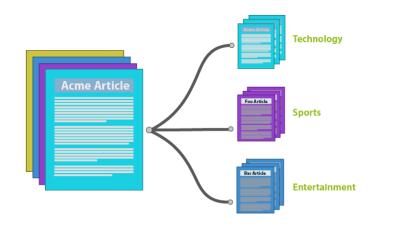
Knowledge Distillation

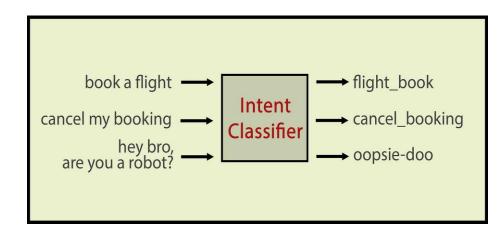
- Making smaller student models that mimic the response of larger teacher models.
- Saving computational resources with minimal performance reduction
- A vanilla KD uses the logits of a large deep model as the teacher knowledge.
- The activations, neurons or features of intermediate layers also can be used as the knowledge to guide the learning of the student model.



Discriminative LMs (BERT, RoBERTa, ELECTRA)

- KD approaches in NLP, are mostly studied for small (< 1B parameters) discriminative LMs.
- Due to small model size, such models can utilize better signals from output distribution and hidden states of teacher models.
- In LLMs, this is not applicable in common.



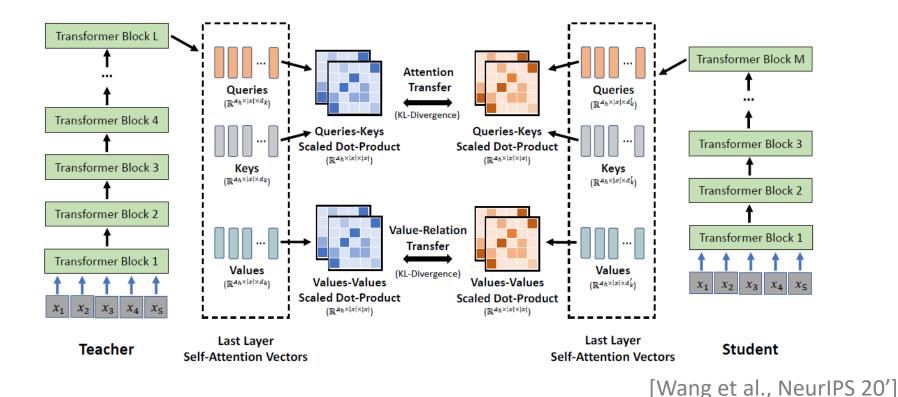


Document Classification

6

Hidden Representation Distillation

- TinyBERT (Huawei), MobileBERT (Google), MiniLM (Microsoft Research)
- Using the hidden representations or attention mapping
- Showing effectiveness for BERT (both pre-training & fine-tuning)



٠

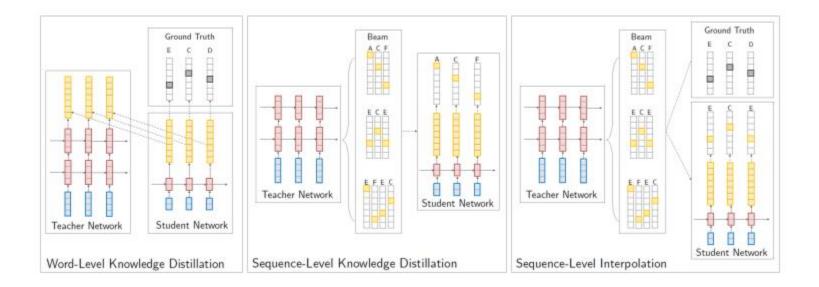
Generative LMs (GPT-4, Claude-3, Gemini)

- Larger output space than classification task
- For text (or image) classification, KL divergence works well because the output space is quite small.
- At most, 1K classes for classification (ImageNet) vs. vocab size of 30K ~ 250K for LLMs
- Training-Inference mismatch
- Generative LMs train in teacher-forcing manners, however, inferences in autoregressive manners.
- Also known as **exposure bias**

•

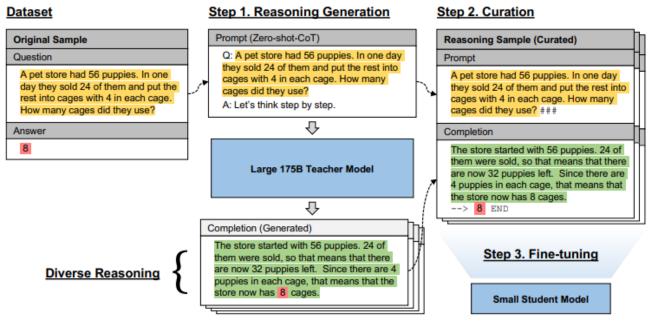
Sequence-Level Knowledge Distillation (EMNLP 16')

- Train the student network w/ cross-entropy on the teacher model generation.
- (1) Train teacher model (2) Run beam search over the training set (3) train the student network w/ CE on this new dataset.
- 10 times faster than SOTA teacher with little loss in performance.



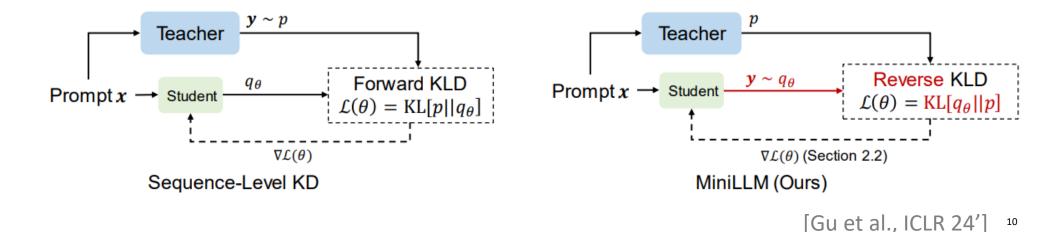
Reasoning

- Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes (ACL 23')
- Large Language Models Are Reasoning Teachers (ACL 23')
- SeqKD recently get popularity in LLM era, especially for closed-source LLMs. (Blackbox KD)
- Small LMs can get reasoning abilities which is known as emergent ability of LLMs.



MiniLLM: Knowledge Distillation of Large Language Models (ICLR 24')

- Sequence-level KD into reinforcement learning framework.
- Using reverse KL divergence: $\theta = \arg \min \mathcal{L}(\theta) = \arg \min \operatorname{KL}(q_{\theta} || p)$
- Policy gradient Theorem: $\nabla \mathcal{L}(\theta) = \sum_{t=1}^{T} (R_t 1) \nabla \log q_{\theta}(y_t | y_{< t}, x)$
- + Additional Technique to instability problems of policy gradient
- Single-step decomposition / Techer-mixed sampling / Length normalization

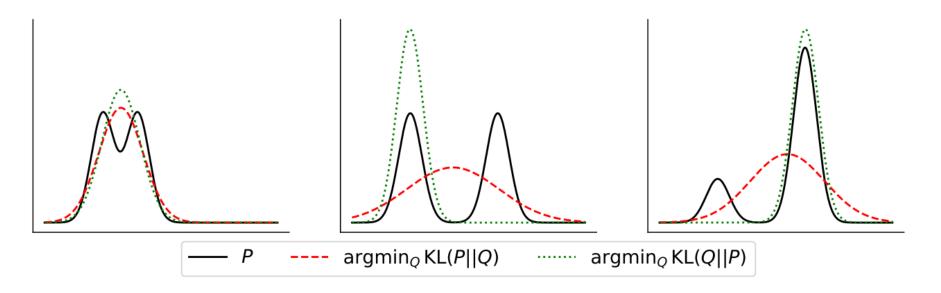


- On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes (ICLR 24')
- Using student-generated outputs (SGO) for addressing train-inference mismatch.
- Motivated by on-policy imitation learning, popular in robotics and deep RL.
- Student receives token-specific feedback from the teacher's logits on erroneous tokens.

Algorithm 1 Generalized Knowledge Distillation (GKD)

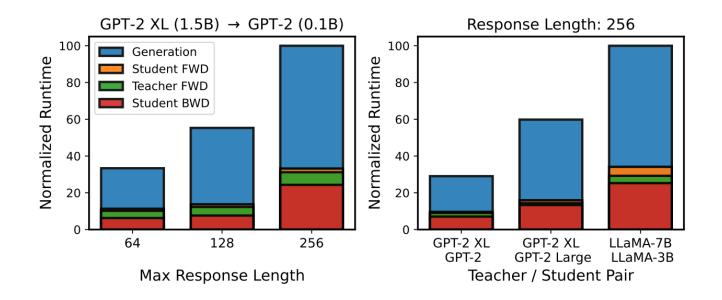
- 1: Given: Teacher model $p_{\rm T}$, Student Model $p_{\rm S}^{\theta}$, Dataset (X, Y) containing (input, output) pairs
- 2: Hyperparameters: Student data fraction $\lambda \in [0, 1]$, Divergence \mathcal{D} , Learning rate η
- 3: for each step $k = 1, \ldots, K$ do
- 4: Generate a random value $u \sim Uniform(0, 1)$
- 5: **if** $u \leq \lambda$ **then**
- 6: Sample inputs x from X and generate outputs $y \sim p_{S}^{\theta}(\cdot|x)$ to obtain $B = \{(x_{b}, y_{b})\}_{b=1}^{B}$
- 7: **else**
- 8: Sample batch of inputs and outputs from (X, Y) to obtain $B = \{(x_b, y_b)\}_{b=1}^B$.
- 9: **end if**
- 10: Update θ to minimize L_{GKD} : $\theta \leftarrow \theta \eta \frac{1}{B} \sum_{(x,y) \in B} \nabla_{\theta} \mathcal{D}(p_{\text{T}} \| p_{\text{S}}^{\theta})(y|x)$
- 11: end for

- Lack of in-depth analysis for objective functions
- MiniLLM used policy gradient to minimize reverse KLD.
- GKD and f-distill evaluated various objective functions: (reverse) KLD, JSD, TVD
- Results indicated the optimal divergence seems to be task-dependent.
- Requiring additional efforts to inconveniently select a proper loss function.



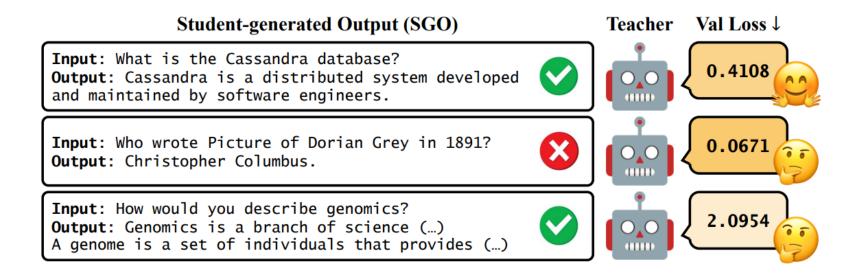
Heavy computation of SGO

- On-policy distillation has been shown effectiveness in recent studies.
- However, generating SGOs for every iteration is computationally inefficient.
- SGO generation accounts for a consideration portion of the total training time, reaching up to 80%.



Negative Effect of SGOs

- The inaccurate or unfamiliar SGOs to teacher model potentially lead to misguidance.
- MiniLLM suggested to mix the distribution of teacher and student to alleviate this.
- However, this notably increases training computation because teacher model is used for generating.



Summary

- Here, we introduce the DistiLLM, addressing the problems of recent KD methods.
- DistiLLM includes:
- (1) Skew KLD, significantly improves optimization stability and generalizability.
- \rightarrow in-depth analysis for objective function
- (2) Adaptive off-policy, comprises an adaptive SGO scheduler & off-policy strategy
- → adaptive SGO: alleviating potential noisy feedback
- → off-policy strategy: improving sample efficient of SGO
 - \rightarrow better utilization of SGOs in KD

Algorithm 1 Training pipeline of DISTILLM 1: **Input:** initial prob. ϕ , student q_{θ_0} with parameters θ_0 , teacher p, total training iterations T, training & validation dataset $\mathcal{D}, \mathcal{D}_{val}$, empty replay buffer \mathcal{D}_R 2: **Output:** Student model q_{θ_T} with trained parameters θ_T 3: while t < T do Randomly sample $u \sim \text{Unif}(0, 1)$ 4: /* Linearly Decreasing Replay Ratio */ 5: if $u < \lambda_R := \phi(1 - \frac{t}{T})$ then 6: /* Generate SGO & Update D_R */ 7: Generate SGO $\{\tilde{\mathbf{y}}_i\}_{i=1}^B$ from $\{q_{\theta_t}(\cdot|\mathbf{x}_i)\}_{i=1}^B$ 8: Store SGO into \mathcal{D}_R ; $\mathcal{D}_R \leftarrow \mathcal{D}_R \cup \{(\mathbf{x}_i, \tilde{\mathbf{y}}_i)\}_{i=1}^B$ 9: end if 10: if $u < \phi$ then 11: /* Use SGO in Off-policy Approach (Fig. 4(c)) 12: Sample mini-batch $\{(\mathbf{x}_i, \tilde{\mathbf{y}}_i)\}_{i=1}^B$ from \mathcal{D}_R 13: 14: else /* Use Sample from Fixed Dataset (Fig. 4(a)) */ 15: Sample mini-batch $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^B$ from \mathcal{D} 16: end if 17: 18: /* Use S(R)KL */ Update θ_t by S(R)KL $D_{SKI}^{(\alpha)}(\cdot, \cdot)$ 19: if do validation then 20: $\mathcal{L}_{prev}, \phi \leftarrow \text{SGO}_\text{Scheduler}(\mathcal{L}_{prev}, \mathcal{D}_{val}, q_{\theta})$ 21: 22: end if 23: end while 24: 25: /* Adaptive SGO Scheduler */ 26: **def** SGO_Scheduler($\mathcal{L}_{\tilde{t}-1}, \mathcal{D}_{val}, q_{\theta}$): /* Compute Loss for Validation Set */ 27: $\mathcal{L}_{\tilde{t}} \leftarrow \frac{1}{|D_{val}|} \sum_{\mathbf{x}_{val}, \mathbf{y}_{val}} \operatorname{Loss}(q_{\theta}, \mathbf{x}_{val}, \mathbf{y}_{val})$ 28: if $\mathcal{L}_{\tilde{t}} > \mathcal{L}_{\tilde{t}-1} + \varepsilon$ then 29: Update $\phi_{\tilde{t}} \leftarrow \min(\phi_{\tilde{t}-1} + 1/N_{\phi}, 1.0)$ 30: 31: else $\mathcal{L}_{\tilde{t}}, \phi_{\tilde{t}} \leftarrow \mathcal{L}_{\tilde{t}-1}, \phi_{\tilde{t}-1}$ 32: end if 33: return $\mathcal{L}_{\tilde{t}}, \phi_{\tilde{t}}$ 34:

Instruction-following tasks

- We trained all models on databricks-dolly-15k, open-source instruction-following dataset built by human.
- We evaluated all models on evaluation set of
- databricks-dolly-15k / Self-instruct / Vicuna / Super-Natural instruction / Unnatural instruction
- The metric we used are **ROUGE-L / GPT-4 feedback**

• Skewing KLD is highly effective with a more **favorable optimization process**.

$$D_{SKL}^{(\alpha)}(p,q_{\theta}) = D_{KL}(p,\alpha \cdot p + (1-\alpha) \cdot q_{\theta})$$

• We can similarly define the α -SRKL by

$$D_{SRKL}^{(\alpha)}(p,q_{\theta}) = D_{KL}(q_{\theta},(1-\alpha)\cdot p + \alpha \cdot q_{\theta})$$

- We showed S(R)KL is superior to other loss functions, owing to its
- More stable gradient and Smaller approximation error

• We first analyze the gradients of KLD and Skew KLD to parameter θ .

$$\nabla_{\theta} D_{KL}(p, q_{\theta}) = -r_{p,q_{\theta}} \nabla_{\theta} q_{\theta}(\boldsymbol{y}|\boldsymbol{x})$$

$$\nabla_{\theta} D_{SKL}^{(\alpha)}(p, q_{\theta}) = (1 - \alpha) r_{\boldsymbol{y}, \tilde{q}_{\theta}} \nabla_{\theta} q_{\theta}(\boldsymbol{y}|\boldsymbol{x})$$

$$\tilde{q}_{\theta}(\boldsymbol{y}|\boldsymbol{x}) = \alpha p(\boldsymbol{y}|\boldsymbol{x}) + (1 - \alpha) q_{\theta}(\boldsymbol{y}|\boldsymbol{x})$$

 $r_{max} = n(\mathbf{v}|\mathbf{x})/a_0(\mathbf{v}|\mathbf{x})$

• The gradient analysis for RKLD and Skew RKLD reveals similar trends.

$$\nabla_{\theta} D_{KL}(q_{\theta}, p) = -(\log r_{q_{\theta}, p} + 1) \nabla_{\theta} q_{\theta}(\mathbf{y}|\mathbf{x})$$

$$\nabla_{\theta} D_{SKL}^{(\alpha)}(q_{\theta}, p) = -(\log r_{q_{\theta}, \tilde{p}} + 1 - \alpha r_{q_{\theta}, \tilde{p}}) \nabla_{\theta} q_{\theta}(\mathbf{y}|\mathbf{x})$$

$$10^{-2} \int_{0.0 \ 0.1 \ 0.5 \ 0.9}^{(\alpha)} 10^{-1} \int_{0.0 \ 0.1 \ 0.5 \ 0.9}^{(\alpha)} 10^{-1} \int_{0.0 \ 0.1 \ 0.5 \ 0.9}^{(\alpha)} 10^{-2} \int_{0.0 \ 0.1 \ 0.5 \ 0.9}^{(\alpha)} 10^{-2} \int_{0.0 \ 0.1 \ 0.5 \ 0.9}^{(\alpha)} 10^{-1} \int_{0.0 \ 0.1 \ 0.5 \ 0$$

1.

Figure 9. Gradient coefficient distribution for SKL and SRKL across different skew values, α . Skewing KLD and RKLD effectively smooth the gradient norm, as seen in (a) and (c). For coefficients normalized by their median value, SKL shows a similar distribution when $\alpha > 0$ while SRKL exhibits explosion, as depicted in (b) and (d).

- We showed that the empirical estimator of Skew KLD from mini-batch training has a bounded L2 norm.
- By achieving minimal error between the estimator and true divergence, we can
- Ensures rapid convergence,
- **High generalizability** by reflecting the full distribution from the empirical estimator.

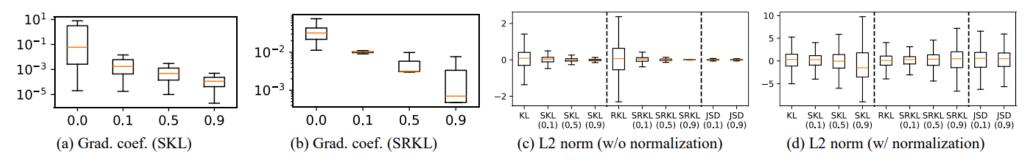


Figure 3. (a)-(b): Gradient coefficient distribution for SKL and SRKL across different skew values α , as shown in Eq. 6–7. (c): Distribution of differences between divergence values and their (exponential) moving average of α -S(R)KL, as shown in Thm. 1, and those of β -JSD by substituting SKL into JSD across different α and β , respectively. (d): Normalized L2 norm distribution, dividing the L2 norm in (c) by corresponding gradient coefficient values.

• Selecting α involves a trade-off:

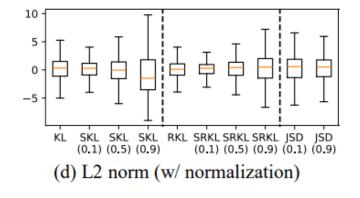
- The relationship between the upper bound of the normalized L2 norm and α ∈
 [0, 1].
- Underscoring the importance of **balancing gradient and L2 norm scales**.
- Difference between SKL and JSD $(D_{ISD}^{(\beta)}(p,q_{\theta}) = \beta D_{SKL}^{(\beta)}(p,q_{\theta}) + (1-\beta)D_{SKL}^{(1-\beta)}(p,q_{\theta}))$:
- SKL with a mild α achieves a proper L2 norm value
- JSD cannot simultaneously achieve moderate skew values for both terms.

Remark 1. By considering the reverse of approximated gradient scale, we have:

$$\mathbb{E}\left[|\frac{1}{(1-\alpha)} (D_{SKL}^{(\alpha)}(p_n^1, p_n^2) - D_{SKL}^{(\alpha)}(p^1, p^2))|^2\right]$$

$$\leq \frac{c_1^*(\alpha)}{n^2} + \frac{c_2 \log^2(\alpha n)}{(1-\alpha)^2 n} + \frac{c_3 \log^2(c_4 n)}{\alpha^2 (1-\alpha)^2 n},$$

for $c_1^*(\alpha) = \min\left\{\frac{1}{\alpha^2 (1-\alpha)^2}, \frac{\chi^2(p^1, p^2)^2}{(1-\alpha)^4}\right\}.$



- Conventional KLD, RKLD, JSD with a $\beta=0.9$, and SKL and SRKL with a lpha=0.1

 $D_{JSD}^{(\beta)}(p,q_{\theta}) = \beta D_{KL}(p,\beta p + (1-\beta)q_{\theta}) + (1-\beta)D_{KL}(q_{\theta},\beta p + (1-\beta)q_{\theta})$

- (Left) The results showed that our proposed objective function generally outperform the others.
- (Right) SKL and SRKL achieve remarkably high validation ROUGE-L for entire training phase, consistently showing rapid convergence and strong generalization.

Table 2. Evaluation of the effect of SKL and SRKL loss functions. **Bold** and <u>underline</u> indicate the best and second-best results, respectively, among those from the same evaluation dataset. We report the average and standard deviation of ROUGE-L scores across five random seeds.

Loss Function	Dolly Eval	Self-Instruct	Vicuna Eval	Super-Natural	Unnatural
KLD RKLD Generalized JSD	23.52 (0.22) 23.82 (0.34) 24.34 (0.35)	11.23 (0.46) 10.90 (0.58) 12.01 (0.54)	$\frac{15.92\ (0.41)}{16.11\ (0.46)}$ $\frac{16.11\ (0.46)}{15.21\ (0.61)}$	20.68 (0.16) 22.47 (0.21) 25.08 (0.36)	23.38 (0.13) 23.03 (0.11) 27.54 (0.07)
SKL SRKL	24.80 (0.12) 25.21 (0.27)	$\frac{12.86\ (0.34)}{12.98\ (0.24)}$	16.20 (0.57) 15.77 (0.39)	26.26 (0.41) 25.83 (0.15)	28.06 (0.08) 28.62 (0.10)

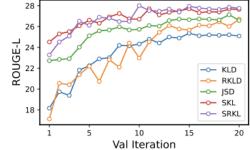
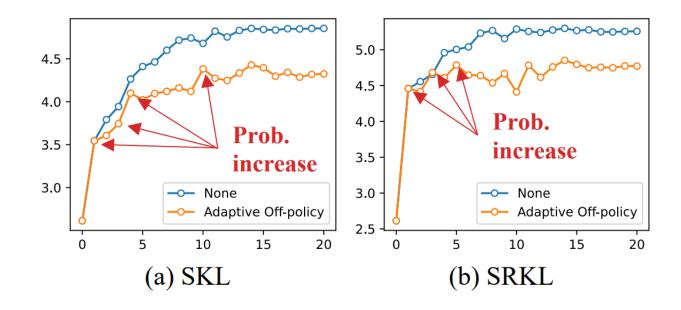


Figure 6. ROUGE-L scores for the validation set across the different loss functions.

Graduate School of Al

- We define the probability of using SGOs, denoted as ϕ .
- Our scheduler starts with low ϕ value, gradually increasing during training.
- We primarily rely on validation loss as a metric.
- We adjust ϕ by comparing the current and previous validation losses; an increase in validation loss leads to an increase in ϕ .

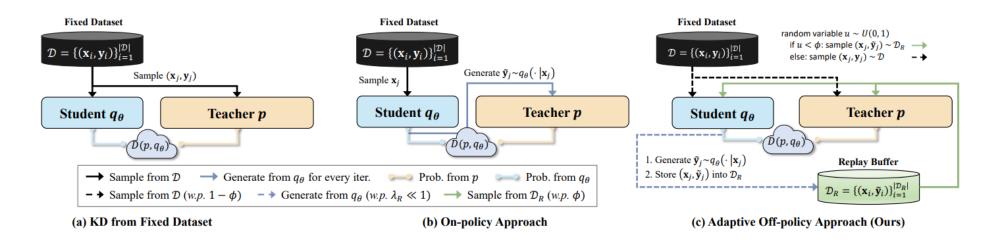


On Machine Learning

Off-policy Approach

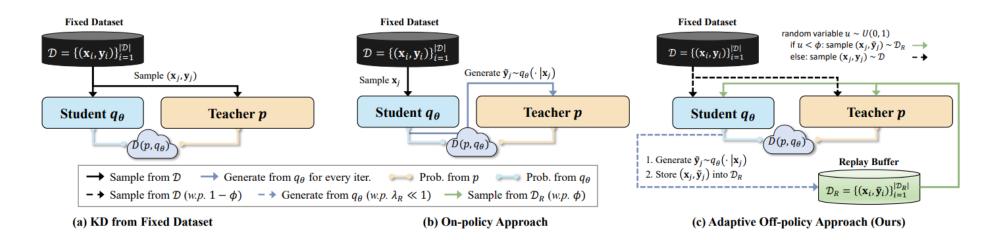
•

- **On-policy distillation** is **computationally heavy**, generating SGO for every iteration.
- Off-policy approach can improve computational efficiency of distillation.
- Motivated from off-policy RL, we store SGOs into replay buffer.
- We utilize these samples for multiple times, instead of disposable SGO of on-policy.



High Bias Error of Off-policy RL

- Off-policy RL is prone to high bias error, when there is a significant difference between past and current policies.
- Early training: student model parameters rapidly evolve → focusing on using current SGOs with a small replay ratio
- Late training: student model converge → highly reusing stored SGOs with a high replay ratio



Synergy Between Skew KLD and Off-policy Approach unterschool of A

- The success of off-policy approach **stems from the fast convergence of S(R)KL** while other loss functions cannot be achieved.
- Both SKL and SRKL have a significant early-stage improvement, effectively leveraging the off-policy without high bias issues.
- Unlike other loss functions (KLD, JSD) that suffer performance drops when switching from on-policy to off-policy, our method maintains its efficacy.

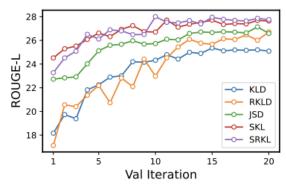


Figure 6. ROUGE-L scores for the validation set across the different loss functions.

Table 4. Application of our off-policy method to the existing KD methods. Off-policy significantly reduces the performance of ImitKD and GKD, as opposed to our proposed **DISTILLM**.

Dataset	Dolly	v Eval	Self-I	nstruct	Super-	Natural
Sampling	on-	off-	on-	off-	on-	off-
ImitKD (Lin et al., 2020)	21.63	20.62	10.85	10.09	19.94	18.04
GKD (Agarwal et al., 2024)	23.75	22.89	12.73	12.78	26.05	24.97
DISTILLM (ours)	26.37	26.12	13.14	13.16	28.24	28.20

On Machine Learnir

- Mixed strategy: using on-policy approach *w.p.* 0.5
- Adaptive SGO scheduler effectively balances the trade-off between the risk of noisy feedback and training-inference mismatch.
- Our off-policy approach achieves 2. 2 × to 3. 4 × faster training speed compared to the on-policy or mixed strategy.

Table 3. Evaluation of the adaptive off-policy approach. We apply SKL and SRKL with all generation methods. We report the average and standard deviation of ROUGE-L scores across five random seeds. The best and second best performances are highlighted **bold** and <u>underline</u>.

Generation	Dolly Eval	Self-Instruct	Vicuna Eval	Super-Natural	Unnatural
Skew KLD	24.80 (0.12)	12.86 (0.34)	16.20 (0.57)	26.26 (0.41)	28.06 (0.08)
∟ On-policy	24.27 (0.46)	13.13 (0.44)	16.39 (0.21)	25.87 (0.18)	26.49 (0.09)
∟ Mixed	25.27 (0.35)	12.24 (0.69)	17.19 (0.29)	25.30 (0.33)	26.51 (0.11)
∟ Adaptive (ours)	25.90 (0.20)	13.24 (0.30)	17.59 (0.44)	27.62 (0.05)	28.30 (0.11)
+ Off-policy (ours)	25.79 (0.28)	13.03 (0.29)	17.41 (0.15)	27.32 (0.09)	28.13 (0.21)
Skew RKLD	25.21 (0.27)	12.98 (0.24)	15.77 (0.39)	25.83 (0.15)	28.62 (0.10)
∟ On-policy	26.04 (0.33)	12.93 (0.54)	17.45 (0.37)	27.29 (0.12)	28.72 (0.10)
∟ Mixed	26.01 (0.61)	12.24 (0.69)	17.19 (0.29)	26.40 (0.34)	29.02 (0.14)
∟ Adaptive (ours)	26.37 (0.21)	13.14 (0.37)	18.32 (0.17)	28.24 (0.22)	30.11 (0.04)
+ Off-policy (ours)	26.11 (0.68)	13.14 (0.69)	18.46 (0.53)	27.51 (0.03)	29.35 (0.07)

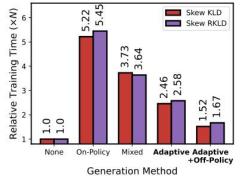


Figure 7. Relative training time for different generation methods for skew KLD and skew RKLD. The adaptive off-policy approach shows significant efficiency.

• DistiLLM outperforms other baselines for ROUGE, GPT4, and training speedup.

