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. Large Language Models

. LLMs have the

. Attributed to the increased scale of training data and model parameters.

. Higher inference costs or large memory footprints
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. Necessity of reducing the demands on computational resources becomes important
Quantization: Making weights and activation into low-bit integers (i.e., 3-bit, 4-bit)
Network Pruning: Remove redundant units (i.e., neuron, head, block) of network

: building models that can mimic larger model

Decomposition Fine-tuning S — |W|
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Weights ﬁ_éié_ﬁt_ IFn_pc_rt_anc_é Pruned Weights
grouped per layer
Quantization Network Pruning

[Kim et al. NeurIPS (2023); Sun et al., ICLR (2024)] :
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Knowledge Distillation

Making smaller student models that mimic the response of larger teacher models.
Saving computational resources with
A vanilla KD uses the logits of a large deep model as the teacher knowledge.

The activations, neurons or features of intermediate layers also can be used as the
knowledge to guide the learning of the student model.

Teacher Model

Relation-Based Knowledge
/ N \
int Layers

-———

[PPOJAl 19YyEd |,

Distill N

Feature-Based Knowledge Response-Based Knowledge

[Gou et al., UCV (2021)]
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. Discriminative LMs (BERT, RoBERTa, ELECTRA)

KD approaches in NLP, are mostly studied for small (< 1B parameters) discriminative

LMs.

Due to small model size, such models can utilize better signals from output

distribution and hidden states of teacher models.

In LLMs, this is not applicable in common.

book a flight =

cancel my booking =

hey bro,
are you a robot?

Intent
Classifier

— flight_book
— cancel_booking

— 00psie-doo

Document Classification Intent Classification
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Hidden Representation Distillation
TinyBERT (Huawei), MobileBERT (Google), MiniLM (Microsoft Research)

Using the hidden representations or attention mapping

Showing effectiveness for BERT (both pre-training & fine-tuning)
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[Wang et al., NeurlIPS 20’] ¢
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Generative LMs (GPT-4, Claude-3, Gemini)

Larger output space than classification task

For text (or image) classification, KL divergence works well because the output
space is quite small.

At most, 1K classes for classification (ImageNet) vs. vocab size of 30K ~ 250K for
LLMs

Training-Inference mismatch

Generative LMs train in teacher-forcing manners, however, inferences in auto-
regressive manners.

Also known as exposure bias
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Sequence-Level Knowledge Distillation (EMNLP 16’)

Train the student network w/ cross-entropy on the teacher model generation.

(1) Train teacher model (2) Run beam search over the training set (3) train the
student network w/ CE on this new dataset.

10 times faster than SOTA teacher with little loss in performance.
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[Kim and Rush, EMNLP 16’] =
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Distilling Step-by-Step! Outperforming Larger Language Models
with Less Training Data and Smaller Model Sizes (ACL 23’)

Large Language Models Are Reasoning Teachers (ACL 23’)

SegKD recently get popularity in LLM era, especially for closed-source LLMs. (Black-

box KD)

Small LMs can get reasoning abilities which is known as emergent ability of LLMs.

Dataset Step 1. Reasoning Generation Step 2. Curation
Original Sample Prompt (Zero-shot-CoT) Reasoning Sample (Curated)
Question Q- A pet store had 56 puppies. In one day Prompt

A pet store had 56 puppies. In one

How many cages did they use?

day they sold 24 of them and put the | -
rest into cages with 4 in each cage. |

they sold 24 of them and put the rest into
cages with 4 in each cage. How many
cages did they usa?

A Let's think step by step.

£

cages did they use? 44

A pet store had 56 puppies. In one day I
they sold 24 of them and put the rest into
cages with 4 in each cage. How many

Diverse Reasoning {

Completion {Generated)

The store started with 56 puppies. 24 of
them were sold, so that means that there

are now 32 puppies left. Since there are 4 |{

puppies in each cage, that means that the
store now has 8 cages.

Answer Completion
8 The store started with 56 puppies. 24 of | []
them were sold, so that means that there
Large 175B Teacher Model are now 32 puppies left. Since there are
~ 4 puppies in each cage, that means that
g /| the store now has 8 cages.
--> |8 END

Step 3. Fine-tuning

Small Student Model

[Ho et al., ACL 23’]

Internatio ICf

9



KAIST Al - ICML

M"“LLM Graduate School of Al international Confers

MiniLLM: Knowledge Distillation of Large Language
Models (ICLR 24’)

Sequence-level KD into reinforcement learning framework.

Using reverse KL divergence: 8 = argmin L(6) = arg mgin KL(qg|lp)

Policy gradient Theorem: VL(8) = Y.1_1(R; — DVlog qg (y¢|V<e, %)
+ Additional Technique to instability problems of policy gradient

Single-step decomposition / Techer-mixed sampling / Length normalization

Teacher y-r Teacher
90 " Forward KLD y~a0 | Reverse KD
. i | Promptx — Student ' :
Promptax — Student | £0) = KL[pl|qo] ’ + | L£(6) = KLigellp] ;
T veey VL(6)(Section22)
Sequence-Level KD MiniLLM (Ours)

[Gu et al., ICLR 24’]
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On-Policy Distillation of Language Models: Learning
from Self-Generated Mistakes (ICLR 24’)

Using student-generated outputs (SGO) for addressing train-inference mismatch.
Motivated by on-policy imitation learning, popular in robotics and deep RL.

Student receives token-specific feedback from the teacher’s logits on erroneous
tokens.

Algorithm 1 Generalized Knowledge Distillation (GKD)

1: Given: Teacher model pr, Student Model p¢, Dataset (X,Y") containing (input, output) pairs
2: Hyperparameters: Student data fraction A € [0, 1], Divergence D, Learning rate 7
3: foreachstepk =1,..., K do

4:  Generate a random value u ~ Uniform(0,1)
5 if © < A then
6: Sample inputs = from X and generate outputs y ~ pf(-|z) to obtain B = {(zy,yp) }_,
7:  else
8 Sample batch of inputs and outputs from (X, Y") to obtain B = {(zp, ) }5_,.
9:  endif
10:  Update € to minimize Lokp: 0 < 0 — 14 D (zy)eB VoD (pr|pé)(y|z)
11: end for

[Agarwal et al., ICLR 24’] =
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Lack of in-depth analysis for objective functions

MiniLLM used policy gradient to minimize reverse KLD.
GKD and f-distill evaluated various objective functions: (reverse) KLD, JSD, TVD
Results indicated the optimal divergence seems to be task-dependent.

Requiring additional efforts to inconveniently select a proper loss function.

[Agarwal et al., ICLR 24’] =



Problem of Recent KD for LLMs (2)

. Heavy computation of SGO
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. On-policy distillation has been shown effectiveness in recent studies.

. However, generating SGOs for every iteration is computationally inefficient.

. SGO generation accounts for a consideration portion of the total training time,

reaching up to 80%.
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of Recent KD for LLMs (3)

. Negative Effect of SGOs

The inaccurate or unfamiliar SGOs to teacher model potentially lead to
misguidance.
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MiniLLM suggested to mix the distribution of teacher and student to alleviate this.

However, this notably increases training computation because teacher model is

used

for generating.

Student-generated Output (SGO)

-

-

Input: What is the Cassandra database?
Output: Cassandra is a distributed system developed
and maintained by software engineers.

Input: Who wrote Picture of Dorian Grey in 18917
Output: Christopher Columbus.

Input: How would you describe genomics?
Output: Genomics is a branch of science (.)
A genome is a set of individuals that provides (..)

&
X
&

Teacher

0,0
|11
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Val Loss |
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Algorithm 1 Training pipeline of DISTILLM
Summa ry 1: Input: initial prob. ¢, student gg, with parameters ;

fy, teacher p, total training iterations 7', training &
validation dataset D, D,,,;, empty replay buffer Dp

. . .- . 2: Qutput: Student model gp,. with trained parameters ¢
. Here, we introduce the DistiLLM, addressing the > whilet <Tdo P !
4:  Randomly sample u ~ Unif(0, 1)
prObIemS Of recent KD methOdS° 5: /¥ Linearly Decreasing Replay Ratio */
.. . 6: ifu < Ap:=¢(1— %) then
.  DistiLLM includes: 7: /* Generate SGO & Update Dy, */
8: Generate SGO {y; }Z_, from {gp, (:|xi)} 2,
. g . .. . : Store SGO into Dg; Dr + D Vi)t
. (1) Skew KLD, significantly improves optimization 5 StreSGOnto Dr; Dr + Dr U {0 Fi)hiza
stability and generalizability. I:ifu<gthen o
. . . . . 12: /* Use SGO in Off-policy Approach (Fig. 4(c))
. = in-depth analysis for objective function 13 Sample mini-batch {(x;,¥:)}2 | from Dy
14:  else
15: /* Use Sample from Fixed Dataset (Fig. 4(a)) */
: : : ; 16: Sample mini-batch {(x;,y;)}2 , from D
(2) Adaptive off-policy, comprises an adaptive SGO !5 Sample minibatch {(x;, y)) }i=, from
scheduler & off-policy strategy 18: /% UseSRKLY
. . L . . 19:  Update #; by S(R)KL Dgy; (-, )
. — adaptive SGO: alleviating potential noisy 20 ifdo validation them -
feedback 21: Lprey: @ < SGO_Scheduler(Ly, ey, Dyars go,)
22:  end if

. . . . . 23: end whil
. - off-policy strategy: improving sample efficient W
Of SGO 25: [* Adaptive SGO Scheduler */
26: def SGO_Scheduler(L;_ 4, Dyat, go):
27: [# Compute Loss for Validation Set */

28: .CE — m quuﬂ-_}"ua{ Loss(9g; Xvals Yval)
. = 29: ifL; > L; | + ¢ then

30: Update ¢; < min(¢;_; +1/Ny, 1.0)

31 else

32: L, o5« L1, P11

33: end if

34: return L;, ¢;
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Instruction-following tasks

We trained all models on databricks-dolly-15k, open-source instruction-following
dataset built by human.

We evaluated all models on evaluation set of

databricks-dolly-15k / Self-instruct / Vicuna / Super-Natural instruction /
Unnatural instruction

The metric we used are ROUGE-L / GPT-4 feedback

16
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Skewing KLD is highly effective with a more favorable optimization process.

DY (1, q9) = D p + (1 — @) - )

We can similarly define the a-SRKL by

DS('RKL(p' qe) = Dg1(q9, (1 — ) -p+ a - qg)

We showed S(R)KL is superior to other loss functions, owing to its
More stable gradient and Smaller approximation error

17
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We first analyze the gradients of KLD and Skew KLD to parameter 6.
Tae = PYIxX)/q0(ylx)

VoDg1(p,qp) = 1, qg‘v 090 (¥|x)

VoDsi) (0. q0) = (1 — ar, ,queq@(ylx)
do(¥|x) = ap(ylx) + (1 — a)qe (¥|x)
The gradient analysis for RKLD and Skew RKLD reveals similar trends.

VoDi1(qe,p) = —(log 7y, , + 1)Vaqe(ylx)

VoD (g9, p) = —(logrg, 5 + 1 — arg, 5)Veqe (¥|%)

“"2'[??-?-? m'l'[p??? i:?;éﬁl E?'&ﬁ

0.0 0.1 0.5 0.9 0.0 0.1 0.5 0.9 0.0 0.1 0.5 0.9 0.0 0.1 0.5 0.9
(a) SKL (w/o normalization) (b) SKL (w/ normalization) (¢) SRKL (w/o normalization)  (d) SRKL (w/ normalization)

Figure 9. Gradient coefficient distribution for SKL and SRKL across different skew values, . Skewing KLD and RKLD effectively
smooth the gradient norm, as seen in (a) and (c¢). For coefficients normalized by their median value, SKL shows a similar distribution
when oo > 0 while SRKL exhibits explosion, as depicted in (b) and (d).

18
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. We showed that the empirical estimator of Skew KLD from mini-batch training has a
bounded L2 norm.

By achieving minimal error between the estimator and true divergence, we can
Ensures rapid convergence,

High generalizability by reflecting the full distribution from the empirical estimator.

e e b 1 ol

=3 ]
10—5 i 10
'DI]_ O‘IS Glg OIU KIL SI:(L SPI<L SII<L RII<L SRIKL SRIKL SRIKL JSID JSID KIL SII<L SI:(L SI-ICL R}I(L SRIKL SRIKL SRIKL JSID JSID
' ' ' ' (0.1) (0.5) (0.9) (0.1) (0.5) (0.9) (0.1) (0.9) (0.1) (0.5) (0.9) (0.1) (0.5) (0.9) (0.1} {0.9)

(a) Grad. coef. (SKL) (b) Grad. coef. (SRKL) (c) L2 norm (w/o normalization) (d) L2 norm (w/ normalization)

Figure 3. (a)-(b): Gradient coefficient distribution for SKL and SRKL across different skew values «, as shown in Eq. 6-7. (¢): Distribution
of differences between divergence values and their (exponential) moving average of a-S(R)KL, as shown in Thm. 1, and those of 3-JSD
by substituting SKL into JSD across different o and /3, respectively. (d): Normalized L2 norm distribution, dividing the L2 norm in (¢) by
corresponding gradient coefficient values.

19
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Selecting a involves a trade-off:

The relationship between the upper bound of the normalized L2 norm and a €
[0, 1].

Underscoring the importance of balancing gradient and L2 norm scales.
Difference between SKL and JSD (D}ﬁg(p, qo) = ﬁDé,ﬁ()L(p, qe) + (1 — ﬁ)DS(}{zB)(p, dg)):
SKL with a mild a achieves a proper L2 norm value

JSD cannot simultaneously achieve moderate skew values for both terms.

I

KL SKL SKL SKL RKL SRKLSRKLSRKL JSD ]SD
(0.1) (0.5) (0.9)  (0.1) (0.5) (0.9) (0.1) (0.9)

Jor ¢i(a) = min { () X(ﬁ’lgﬁf } (d) L2 norm (w/ normalization)

Remark 1. By considering the reverse of approximated 10 4
gradient scale, we have: 5

Bl ke (D04 ) ~ DLl ) %] i %3 ]

ci(a)  calog?(an)  e3log®(can)
— n? (1—a)?*n  a?(1—a«)?n’

20
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Conventional KLD, RKLD, JSD with a § = 0.9, and SKL and SRKL witha a = 0.1

D&y, ) = BDk1(p, Bp + (1 = B)qo) + (1 — B)Dk1(qe, Bp + (1 — o)

(Left) The results showed that our proposed objective function generally
outperform the others.

(Right) SKL and SRKL achieve remarkably high validation ROUGE-L for entire training
phase, consistently showing rapid convergence and strong generalization.

Table 2. Evaluation of the effect of SKL and SRKL loss functions. Bold and underline indicate the 281
best and second-best results, respectively, among those from the same evaluation dataset. We report

the average and standard deviation of ROUGE-L scores across five random seeds. § 1
2 22

Loss Function | Dolly Eval | Self-Instruct | VicunaEval | Super-Natural | Unnatural e
KLD 23.52(0.22) | 11.23(046) | 1592 (0.41) | 20.68(0.16) | 23.38(0.13) R . .
RKLD 23.82(0.34) | 10.90(0.58) | 16.11(0.46) 22.47(0.21) 23.03 (0.11) 7 Valteraton
Generalized JSD 24.34 (0.35) 12.01 (0.54) 15.21 (0.61) 25.08 (0.36) 27.54 (0.07) Figure 6. ROUGE-L scores for
SKL 24.80 (0.12) | 12.86(0.34) | 16.20(0.57) | 26.26(0.41) | 28.06(0.08)  the validation set across the dif-
SRKL 25.21 (0.27) 12.98 (0.24) 15.77 (0.39) 25.83 (0.15) 28.62 (0.10) ferent loss functions

21
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Effectively balance between noisy feedback and training-inference mismatch

We define the probability of using SGOs, denoted as ¢.

Our scheduler starts with low ¢ value, gradually increasing during training.

We primarily rely on validation loss as a metric.

We adjust ¢ by comparing the current and previous validation losses; an increase
in validation loss leads to an increase in ¢.

4.5 1

4.0 1

3.5 4

3.0 A

5.0
4.5 4
4.0 A
Prob.
increase | 3°]
—0— None 3.0
—0— Adaptive Off-policy
2.5

5 10 15 20

(a) SKL

—O=— None

increase

—0— Adaptive Off-policy

0 5 10

(b) SRKL

15 20

22
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. Off-policy Approach
On-policy distillation is computationally heavy, generating SGO for every iteration.
Off-policy approach can improve computational efficiency of distillation.

- Motivated from off-policy RL, we store SGOs into replay buffer.

- We utilize these samples for multiple times, instead of disposable SGO of on-policy.

Fixed Dataset Fixed Dataset Fixed Dataset
random variable u ~ U{0,1)
; : 1121 if u < ¢: sample (x;,¥;) ~ Dy
D = {(x;, y[-__}}[-:.l else: sample (x;, y;i ~JI) -
Sample (x),,) Sample Geanernte9~ao(-[) e \
A 4 A 4
[ Student g, ] [ Teacher p ] { Student gy ] Teacher p ] { Teacher p }
I
: 2.4
| 1. Generate §;~qg(- [x;) Replay Buffer
= Sample fromD  —F Generate from gg for every iter. Prob. from p Prob. from gg i 2. Store (x;, §;) into Dy o
= # Sample from D (wp. 1 —¢) = + Generate from gg (wp. 4z K1) Sample from Dy (wp. ¢) Dr = {(xi ¥o)li=1
(a) KD from Fixed Dataset (b) On-policy Approach (¢) Adaptive Off-policy Approach (Ours)

23
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. High Bias Error of Off-policy RL

Off-policy RL is prone to high bias error, when there is a significant difference
between past and current policies.

Early training: student model parameters rapidly evolve — focusing on using
current SGOs with a small replay ratio

Late training: student model converge — highly reusing stored SGOs with a high
replay ratio

Fixed Dataset Fixed Dataset Fixed Dataset

random variable u ~ U{0,1)
i D = if u < ¢: sample (x;,¥;) ~D
T — (. DI ! i ¥i R
D= {(_A\a- .“'r’).l'f:-l else: sample (xj-, yj-) ~D -9
Sample (x;,y;) Sample x; Generate ¥j~qo (- [x;) | mmmmm———————— 1
4 - W

[ Student g4 ] [ Teacher p ] { Student gy ] | Teacher p J | Student gg | { Teacher p }

G D(p,46)
| 1. Generate §;~qg(- [x;) Replay Buffer
— Sample fromD  —F Generate from gg for every iter. Prob. from p Prob. from gg i 2. store (x;, §) into Dg e~
= % Sample from D (wp. 1 —¢) = + Generate from gg (wp. 4z K1) Sample from Dy (wp. @) Dp = {(x:, ¥}t
(a) KD from Fixed Dataset (b) On-policy Approach (c) Adaptive Off-policy Approach (Ours)

24
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The success of off-policy approach stems from the fast convergence of S(R)KL while
other loss functions cannot be achieved.

Both SKL and SRKL have a significant early-stage improvement, effectively
leveraging the off-policy without high bias issues.

Unlike other loss functions (KLD, JSD) that suffer performance drops when switching
from on-policy to off-policy, our method maintains its efficacy.

ROUGE-L
N

1 5 10 15 20
Val Iteration

Figure 6. ROUGE-L scores for
the validation set across the dif-
ferent loss functions.

Table 4. Application of our off-policy method to the existing KD
methods. Off-policy significantly reduces the performance of
ImitKD and GKD, as opposed to our proposed DISTILLM.

Dataset | Dolly Eval | Self-Instruct | Super-Natural
Sampling | on-  off- | on- off- | on-  off-

ImitKD (Lin et al., 2020) 21.63 20.62 | 10.85 10.09|19.94 18.04
GKD (Agarwal et al., 2024) | 23.75 22.89 | 12.73 12.78 | 26.05 24.97
DI1STILLM (ours) 26.37 26.12 | 13.14 13.16 | 28.24 28.20

25
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. Mixed strategy: using on-policy approach w.p. 0.5

. Adaptive SGO scheduler effectively balances the trade-off between the risk of
noisy feedback and training-inference mismatch.

- Our off-policy approach achieves 2. 2 X to 3.4 X faster training speed compared to
the on-policy or mixed strategy.

Table 3. Evaluation of the adaptive off-policy approach. We apply SKL and SRKL with all generation
methods. We report the average and standard deviation of ROUGE-L scores across five random
seeds. The best and second best performances are highlighted bold and underline.

I Skew KLD
[ Skew RKLD

5.22
5.45

Generation | Dolly Eval | Self-Instruct | Vicuna Eval | Super-Natural | Unnatural N

Skew KLD 24.80 (0.12) | 12.86(0.34) | 16.20(0.57) | 26.26 (0.41) | 28.06 (0.08) .

L On-policy 2427 (0.46) | 13.13(0.44) | 16.39(0.21) | 25.87(0.18) | 26.49 (0.09)

L Mixed 25.27 (0.35) | 12.24(0.69) | 17.19(0.29) | 25.30(0.33) | 26.51(0.11) 1 - : _

L Adaptive (ours) 25.90 (0.20) | 13.24(0.30) | 17.59 (0.44) | 27.62(0.05) | 28.30 (0.11) None  On-Policy Hixed - Adaptive Bt policy
+ Off-policy (ours) | 25.79 (0.28) | 13.03(0.29) | 17.41(0.15) 27.32 (0.09) 28.13 (0.21) Generatian’Mehad

Skew RKLD 2521 (027) | 12.98(024) | 1577(039) | 25.83(0.15) | 2862(0.10) 1'gure 7. Relative training time

L On-policy 26.04 (0.33) | 12.93(0.54) | 17.45(037) | 27.29(0.12) | 28.72(0.10)  for different generation methods

L Mixed 26.01 (0.61) | 12.24(0.69) | 17.19(0.29) | 26.40(0.34) | 29.02(0.14)  for skew KLD and skew RKLD.

L Adaptlve (ours) 26.37 (0.21) 13.14 (0.37) 18.32 (0.17) 28.24 (0.22) 30.11 (0.04) The adaptlve Off_pohcy approach
+ Off-policy (ours) 26.11 (0.68) 13.14 (0.69) 18.46 (0.53) 27.51 (0.03) 29.35 (0.07) shows significant efficiency.

Relative Training Time (xN)
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. DistiLLM outperforms other baselines for ROUGE, GPT4, and training speedup.

(a) GPT-2-1.5B — GPT-2-124M (b) GPT-2-1.5B — GPT-2-355M (¢) GPT-2-1.5B — GPT-2-774M (d) OPT-2.7B — OPT-125M
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(¢) OPT-2.7B — OPT-350M (f) OPT-2.7B —» OPT-1.3B (2) OLLaMA2-7B - OLLaMA2-3B  (h) Training Speed (OLLaMA2-3B)



