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Formulation of PINNs

PDE formulation:

D[u(x , t)] = 0, x ∈ Ω,

B[u(x , t)] = 0, x ∈ ∂Ω

• D = differential operator, B = boundary/initial condition operator,

Ω ⊆ Rd

• Example: convection PDE

∂u

∂t
+ β

∂u

∂x︸ ︷︷ ︸
D[u(x,t)]

= 0, x ∈ (0, 2π), t ∈ (0, 1),

u(x , 0)− sin(x)︸ ︷︷ ︸
B1[u(x,t)]

= 0, x ∈ [0, 2π],

u(0, t)− u(2π, t)︸ ︷︷ ︸
B2[u(x,t)]

= 0, t ∈ [0, 1]
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Formulation of PINNs, continued

• PINNs approximate u(x , t) by a neural network u(x , t;w).

• This neural network is trained using a non-linear least squares loss:

minimize
w∈Rp

L(w) =
1

2nres

nres∑
i=1

(
D[u(x i

r , t
i
r ;w)]

)2

︸ ︷︷ ︸
PDE residual loss

+
1

2nbc

nbc∑
i=1

(
B[u(x j

b, t
j
b;w)]

)2

︸ ︷︷ ︸
initial/boundary conditions loss

Figure 1: The PINN framework [Ko and Park, 2024].
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Training challenges

• High-precision solution needed: The PINN loss L needs to be

near-zero (often < 10−4) to obtain a low ℓ2-relative error (L2RE).

• Poor conditioning: Previous work has suggested that the PINN

loss is ill-conditioned (i.e., harder to optimize) [Krishnapriyan et al.,

2021, De Ryck et al., 2023].

• Non-convexity: Hard to reach a global minimum! L-BFGS

[Nocedal and Wright, 2006] is used for training PINNs [Raissi et al.,

2019, Krishnapriyan et al., 2021, Hao et al., 2023], but it can

encounter challenges due to saddle points [Dauphin et al., 2014].
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Hessian → Conditioning → Convergence

• The condition number, κ, is determined by the spectrum of the

Hessian of the loss, HL(w).

• Convergence rates of first-order methods are determined by κ.

• When the eigenvalues of HL(w) are spread out, κ is large (i.e.,

ill-conditioned), leading to slow convergence of first-order methods.

Figure 2: Convergence of gradient descent when κ = 2 and κ = 100.
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The PINN loss is ill-conditioned
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Figure 3: Spectral density of the Hessian and the preconditioned Hessian at

the end of optimization.

• We use spectral density estimation [Ghorbani et al., 2019, Yao et al.,

2020] to compute λ(HL(w)).

• The PINN loss is ill-conditioned: λmax(HL(w)) > 103 (Fig. 3)

• L-BFGS reduces λmax(HL(w)) by at least 103 (Fig. 3).
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Adam+L-BFGS outperforms Adam or L-BFGS alone

• Combining first-order + second-order optimization leads to the best

performance (Fig. 4).
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Figure 4: Across most architectures, Adam+L-BFGS outperforms Adam and

L-BFGS alone. All methods are run for 41000 iterations each.

Pratik Rathore. Challenges in Training PINNs. 6



Theoretical benefits of first-order + second-order methods

Gradient-Damped Newton Descent (GDND)

1. Run KGD steps of gradient descent, starting at w0:

wk+1 = wk − η∇L(wk).

2. Run KDN steps of Newton’s method, starting at w̃0 = wKGD :

w̃k+1 = w̃k − η (HL(w̃k) + γI )−1 ∇L(w̃k).

Theorem (Informal, Rathore et al. [2024]) There exists KGD < ∞ such

that Phase 1 of GDND outputs a point wKGD
, for which Phase 2 of

GDND satisfies

L(w̃k) ≤
(
2

3

)k

L(wKGD
).

Hence after KDN ≥ 3 log
(

L(wKGD
)

ϵ

)
iterations, the output of GDND

satisfies L(w̃KDN
) ≤ ϵ.

Convergence is fast and independent of the condition number!
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Adam+L-BFGS is insufficient for optimizing the PINN loss

• Adam+L-BFGS does not reach a critical point: ∥∇L(wfinal)∥ > 10−3

• Strong Wolfe line search in L-BFGS [Nocedal and Wright, 2006]:

L(wk + ηkdk) ≤ L(wk) + c1ηk∇L(wk)
Tdk (Sufficient decrease)

|∇L(wk + ηkdk)
Tdk | ≤ c2|∇L(wk)

Tdk | (Curvature)

where 0 < c1 < c2 < 1 and dk is a descent direction

• L-BFGS (incorrectly) selects ηk = 0, leading to early stopping.

• We develop a new second-order optimizer, NysNewton-CG, which

only requires the sufficient decrease condition.
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NNCG: a second-order method for training PINNs

• NysNewton-CG (NNCG) is an inexact Newton method that uses

low-rank preconditioning [Frangella et al., 2023] to accelerate solving

for the (damped) Newton direction

dk = −(HL(wk) + ρI )−1∇L(wk).

• NNCG selects the stepsize using only the sufficient decrease

condition (i.e., Armijo line search)

L(wk + ηkdk) ≤ L(wk) + c1ηk∇L(wk)
Tdk . (Sufficient decrease)

• NNCG can reduce both the PINN loss L and L2RE even after

Adam+L-BFGS has stalled.

Pratik Rathore. Challenges in Training PINNs. 9



NNCG: a second-order method for training PINNs

• NysNewton-CG (NNCG) is an inexact Newton method that uses

low-rank preconditioning [Frangella et al., 2023] to accelerate solving

for the (damped) Newton direction

dk = −(HL(wk) + ρI )−1∇L(wk).

• NNCG selects the stepsize using only the sufficient decrease

condition (i.e., Armijo line search)

L(wk + ηkdk) ≤ L(wk) + c1ηk∇L(wk)
Tdk . (Sufficient decrease)

• NNCG can reduce both the PINN loss L and L2RE even after

Adam+L-BFGS has stalled.

Pratik Rathore. Challenges in Training PINNs. 9



NNCG: a second-order method for training PINNs

• NysNewton-CG (NNCG) is an inexact Newton method that uses

low-rank preconditioning [Frangella et al., 2023] to accelerate solving

for the (damped) Newton direction

dk = −(HL(wk) + ρI )−1∇L(wk).

• NNCG selects the stepsize using only the sufficient decrease

condition (i.e., Armijo line search)

L(wk + ηkdk) ≤ L(wk) + c1ηk∇L(wk)
Tdk . (Sufficient decrease)

• NNCG can reduce both the PINN loss L and L2RE even after

Adam+L-BFGS has stalled.

Pratik Rathore. Challenges in Training PINNs. 9



NNCG reduces both loss and error
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Figure 5: Performance of NNCG and gradient descent (GD) after

Adam+L-BFGS. NNCG reduces the loss by a factor greater than 10 in all

instances, while GD fails to make progress.
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NNCG reduces both loss + error, continued
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Figure 6: Absolute errors of the PINN solution at optimizer switch points.

L-BFGS improves the solution obtained from first running Adam, and NNCG

further improves the solution even after Adam+L-BFGS stops making progress.
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Conclusion

• PINNs are challenging to train, since they need high-precision

solutions and suffer from ill-conditioning and non-convexity.

• The PINN loss is ill-conditioned! Quasi-Newton methods like

L-BFGS reduce the condition number.

• Combining first-order + second-order methods is a promising

paradigm for training PINNs.

• We develop NNCG, a second-order optimizer that improves PINN

performance.

• Our insights could be used to improve the utility of PINNs for

solving difficult PDEs.
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Thanks for listening!

Poster: Hall C #301

Time: 11:30 AM – 1:00 PM CEST
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