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Motivation



Why Biological Foundation Models?

A generative model over sequences can learn conservation and evolutionary pressure.
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These models can improve
downstream tasks such as
variant effect prediction, protein
folding, etc.



Existing Applications of Foundation Models in Biology
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Why DNA Foundation Models?

e Extend to non-coding and regulatory regions of the genome
e Solve tasks that protein models cannot solve, e.g., gene annotation

DNABERT-2: EFFICIENT FOUNDATION MODEL AND
BENCHMARK FOR MULTI-SPECIES GENOME

The Nucleotide Transformer: Building and Evaluating Robust
Foundation Models for Human Genomics

DNA language models are powerful
predictors of genome-wide variant effects

HyenaDNA: Long-Range Genomic Sequence
Modeling at Single Nucleotide Resolution




Challenges
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Distal interactions

e Unlike proteomics,
genomics requires
modeling distal interactions
(up to 1M base pairs)




Causal models insufficient to model DNA
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Reverse complement (RC) DNA strands contain
equivalent information

Sequencing order _ Sequencing results
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Models that respect this symmetry have been found to yield
improved performance (zhou et. al, 2021; Mallet et. al, 2021)



Equivariance: Models commute with RC operation
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Equivariance: Models commute with RC operation

RC input
corresponds
to RC output

ACAATG <.

Reverse Complement
sequences



Caduceus



Caduceus highlights

Memory-efficient, bi-directional
extension of Mamba

RC-equivariant language modeling

Improved performance over much larger

Transformers-based and
comparably-sized SSM-based models
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Building towards Caduceus
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Building towards Caduceus: Long-range
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Two dominant approaches to sequence modeling

Transformers

T

Recurrent Neural
Networks
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Interactions between all elements

N

Efficient training

Fixed context size

X X

O(n?) scaling in sequence length

Transformers



Recurrent Neural
Networks

N N

X X X

‘Infinite’ context width

Linear scaling at inference

Fixed-dimensional hidden
representations

Vanishing / exploding gradients

Slow to train



Mamba (and friends)

New hardware-aware architectures
targeting large language models

Mamba (Gu and Dao 2023)
S5 (Smith et al. 2022)
Based (Arora et al. 2024)
Griffin (De et al. 2024)
GLA (Yang et al. 2023)
RetNet (Sun et al. 2023)

Don'tcall it a
comeback
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Why is this important now?

Scaling Laws on The Pile (Sequence Length 8192)
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Building towards Caduceus: Bi-directional

/
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Sharing weights for forward
and backward projections
enables memory-efficient
bi-directional sequence
modeling



“Strategic” Weight-tieing

Maijority of the '

parameters in a
Mamba block
come from linear
projections
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“Strategic” Weight-tieing




Building towards Caduceus: RC equivariant
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Using parameter-sharing
and running modules on
sequences and their RC
versions enables
RC-equivariance



Putting it all together
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Experiments



Improvements in pre-training loss

Test Set Pretrain Loss
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Competitive on standard benchmarks even against much
larger models

> 100M PARAM. MODELS < 2M PARAM. MODELS
ENFORMER DNABERT-2 NT-v2 HYENADNA  CADUCEUS-PH CADUCEUS-PS
(252M) (117M) (500M) (1.6M) (1.8M) (1.8M)
Histone Markers _— O S e . ..
H3 0.719+0.048 0.78540.033 0.78440.047 0.77940.037 0.815+0.048 0.799+0.029 I
H3K14AcC 0.288+40.077 0.51640.028 0.55140.021 0.61240.065 I 0.631+0.026 0.541+0.212
H3K36ME3 0.34440.055 0.59140.020 0.62540.013 0.613+0.041 0.60140.129 0.609+0.109
H3k4ME1 0.291-+0.061 0.511+0.028 0.550+0.021 0.512+0.024 I 0.523+0.039 0.488+0.102
H3K4ME2 0.211+0.069 0.336+0.040 0.319+0.045 0.455+0.095 0.487+0.170 0.388+0.101 |
H3K4ME3 0.158+0.072 0.352+0.077 0.410+0.033 0.549+0.056 I 0.544+0.045 0.440+0.202
H3K79ME3 0.496+0.042 0.613+0.030 0.626+0.026 0.672+0.048 0.697+0.077 0.676+0.026
H3K9AC 0.420+40.063 0.54240.029 0.5624-0.040 0.58140.061 I 0.622+0.030 0.604+0.048
H4 0.73240.076 0.79640.027 0.79940.025 0.76340.044 0.811+0.022 0.789+0.020
H4Ac 0.273+0.063 0.463+0.041 0.495+0.032 0.564+0.038 I 0.621-+0.054 0.52540.240 I
Regulatory Annotation
ENHANCER 0.451+0.108 0.51640.098 0.548+0.144 0.51740.117 0.5464+0.073 0.4914-0.066 I
ENHANCER TYPES 0.309+0.134 0.42340.051 0.4244+0.132 0.38640.185 I 0.439+0.054 0.41640.095
PROMOTER: ALL 0.95440.006 0.97140.006 0.976+4-0.006 0.96040.005 0.970+40.004 0.967+0.004 I
NONTATA 0.95540.010 0.97240.005 0.976+0.005 0.959+0.008 0.969+40.011 0.968+0.006 I
TATA 0.960+0.023 0.955+0.021 0.966+0.013 0.944+40.040 1 0.953+0.016 0.957+0.015
7 : : |
Splice Site Annotation I
ALL 0.848+0.019 0.93940.009 0.983+0.008 0.9564+0.011 I 0.94040.027 0.92740.021
ACCEPTOR 0.914+0.028 0.9754+0.006 0.981+0.011 0.958+0.010 0.93740.033 0.93640.077 I
DONOR 0.906+0.027 0.963+0.006 0.985+0.022 0.9494-0.024 0._948&025_ — 0.8_74&;289_|




Improved eQTL causal SNP prediction with Caduceus

Predicting Effects of Variants on Gene Expression

Dist. to TSS: 30 - 100k Dist. to TSS: 100k+

Dist. to TSS: 0 - 30k
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Improved eQTL causal SNP prediction with Caduceus

Predicting Effects of Variants on Gene Expression
Dist. to TSS: 0 - 30k Dist. to TSS: 30 - 100k Dist. to TSS: 100k+
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Outperforms
transformer-based
model that is orders
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Conclusion

Introduced bi-directional and RC
equivariant extensions of Mamba

Proposed Caduceus, a novel DNA
foundation model

Improved performance over much larger
Transformers-based and
comparably-sized SSM-based models



Thank you!
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! https://qithub.com/kuleshov-qroup/caduceus
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