
Repoformer: Selective Retrieval for 
Repository-Level Code Completion

Di Wu1, Wasi Uddin Ahmad2, Dejiao Zhang2,
Murali Krishna Ramanathan2, Xiaofei Ma2

1University of California Los Angeles, 2AWS AI Labs

https://xiaowu0162.github.io/
https://wasiahmad.github.io/
https://dejiao2018.github.io/


LLMs for Code

• Large language models (LLMs) have been seen as promising 
solutions to code automation. 

Public 
Repositories

Code LLMs

Applications 
& Products

Pre-training

Adaptation

[1] A Survey on Large Language Models for Code Generation. Jiang et al. 2024

https://arxiv.org/pdf/2406.00515


The Knowledge Gap

• However, applying LLMs in private repositories is challenging.

Public 
Repositories Code LLMs

Private User 
Repositories?

Pre-training Application

Open-Domain Knowledge Private Knowledge

• Programming Languages

• Logic; Problem Solving

• Design Patterns

• Reading/Writing Documentation

• Private APIs

• Cross-Module Dependencies

• Development Conventions

Knowledge Gap!



Retrieval-Augmented Generation

• By augmenting LLMs with retrieved repository contexts, RAG improves 
code completion performance. 

[2] RepoCoder: Repository-Level Code Completion Through Iterative Retrieval and Generation

https://aclanthology.org/2023.emnlp-main.151.pdf


Retrieval-Augmented Generation

• By augmenting LLMs with retrieved repository contexts, RAG improves 
code completion performance. 

[2] RepoCoder: Repository-Level Code Completion Through Iterative Retrieval and Generation

However, should we always perform retrieval?

https://aclanthology.org/2023.emnlp-main.151.pdf


Should we always perform retrieval?

• Surprisingly, always augmenting repository-level contexts is both 
harmful to accuracy and inefficient, especially for black-box LLMs.



• Surprisingly, always augmenting repository-level contexts is both 
harmful to accuracy and inefficient, especially for black-box LLMs.

Should we always perform retrieval?



RAG

In-File Completion

Solution: Selective RAG

• We propose to selectively trigger repository-level retrieval.
• Specifically, our proposal takes the form of self-assessment. 



Selective RAG Inference

• We propose to let the LLM self-selects whether repository retrieval 
should be triggered.



• We propose to let the LLM self-selects whether repository retrieval 
should be triggered.

Selective RAG Inference



• We propose to let the LLM self-selects whether repository retrieval 
should be triggered.

Selective RAG Inference



• We propose to let the LLM self-selects whether repository retrieval 
should be triggered.

Selective RAG Inference



• We propose to let the LLM self-selects whether repository retrieval 
should be triggered.

Selective RAG Inference



• We propose to let the LLM self-selects whether repository retrieval 
should be triggered.

Selective RAG Inference



• We propose to let the LLM self-selects whether repository retrieval 
should be triggered.

Selective RAG Inference



• We propose to let the LLM self-selects whether repository retrieval 
should be triggered.

Selective RAG Inference



Selective RAG Inference

• Conveniently modeled as an extension to fill-in-the-middle.



Selective RAG Inference

• Conveniently modeled as an extension to fill-in-the-middle.



Selective RAG Inference

• Conveniently modeled as an extension to fill-in-the-middle.



Selective RAG Inference

• Conveniently modeled as an extension to fill-in-the-middle.



Selective RAG Inference

• Conveniently modeled as an extension to fill-in-the-middle.



Selective RAG Inference

• Conveniently modeled as an extension to fill-in-the-middle.



Learning Selective RAG

• Desiderata: performance-oriented self-reflection

 

• Insight: we could directly learn from RAG simulation
• Sample diverse blanks for code completion.
• Let the an LLM attempt with and without repository-level retrieval.
• If the completion quality improves, label retrieval_required = True. 

Can I solve the problem better with 
repository knowledge?

Does the problem use cross-file info?

Am I confident with answering?

…



Self-Supervised Multi-Task Training

• Self-Evaluation for Selective Retrieval

• Code Generation with Optional Cross-File Context



Accuracy Evaluation

• SOTA completion accuracy on RepoEval and CrossCodeLongEval, a 
new benchmark tailored to long-form code completion. 

[2] (Ours)



Latency Evaluation

• Repoformer improves both accuracy and latency in online serving.



Latency Evaluation

• Repoformer improves both accuracy and latency in online serving.

Always retrieving: suboptimal 
performance with high latency



Latency Evaluation

• Repoformer improves both accuracy and latency in online serving.

Self-selective RAG: higher 
accuracy + lower latency

Always retrieving: suboptimal 
performance with high latency



Repoformer as a Plug-and-Play Policy

• Repoformer helps larger models to prevent uninformative and 
potentially harmful retrievals.



Accuracy of Retrieval Decisions

• Repoformer learns to make accurate abstention judgments.

80% Abstention 
Decisions are Correct



Robustness to Retrieval

• Repoformer training improves the robustness to noisy retrieval. 



Summary

• We propose selective retrieval for repository-level code completion. 
• A self-supervised learning recipe for retrieval decision + code generation. 
• Selective retrieval improves accuracy + latency

• Transferable across code LLMs. 



Discussion

• Different approaches to “when to retrieve”

Question Difficulty Retrieval QualityModel Uncertainty

Performance-Oriented Learning

Self-RAG FLARE When and how to rely on 
retrieval in the kNN-LM

Efficient kNN-LM RECOMP SKR Repoformer

https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2305.06983
https://aclanthology.org/2022.findings-emnlp.218/
https://aclanthology.org/2022.findings-emnlp.218/
https://arxiv.org/pdf/2109.04212
https://arxiv.org/pdf/2310.04408
https://arxiv.org/abs/2310.05002
https://arxiv.org/abs/2403.10059

	Slide 1: Repoformer: Selective Retrieval for Repository-Level Code Completion
	Slide 2: LLMs for Code
	Slide 3: The Knowledge Gap
	Slide 4: Retrieval-Augmented Generation
	Slide 5: Retrieval-Augmented Generation
	Slide 6: Should we always perform retrieval?
	Slide 7
	Slide 8: Solution: Selective RAG
	Slide 9: Selective RAG Inference
	Slide 10: Selective RAG Inference
	Slide 11
	Slide 12: Selective RAG Inference
	Slide 13: Selective RAG Inference
	Slide 14: Selective RAG Inference
	Slide 15: Selective RAG Inference
	Slide 16: Selective RAG Inference
	Slide 17: Selective RAG Inference
	Slide 18: Selective RAG Inference
	Slide 19: Selective RAG Inference
	Slide 20: Selective RAG Inference
	Slide 21: Selective RAG Inference
	Slide 22: Selective RAG Inference
	Slide 23: Learning Selective RAG
	Slide 24: Self-Supervised Multi-Task Training
	Slide 25: Accuracy Evaluation
	Slide 26: Latency Evaluation
	Slide 27: Latency Evaluation
	Slide 28: Latency Evaluation
	Slide 29: Repoformer as a Plug-and-Play Policy
	Slide 30: Accuracy of Retrieval Decisions
	Slide 31: Robustness to Retrieval
	Slide 32: Summary
	Slide 33: Discussion

