

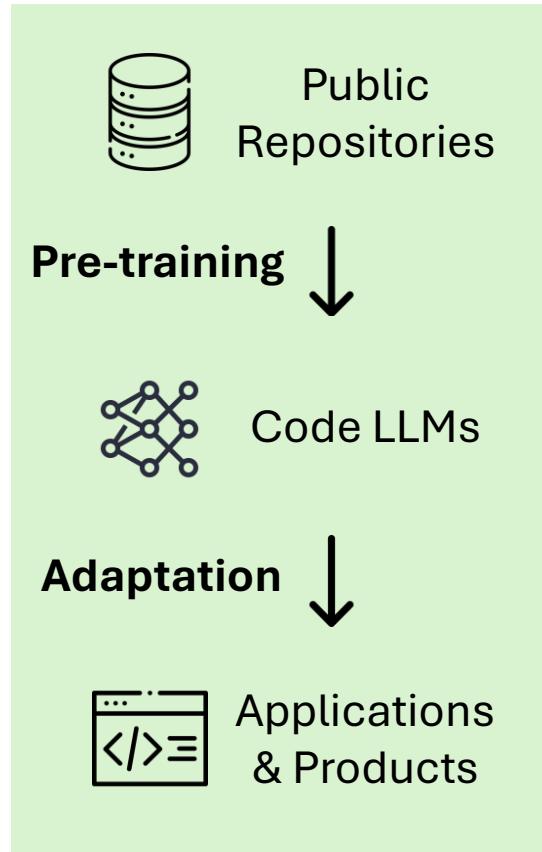
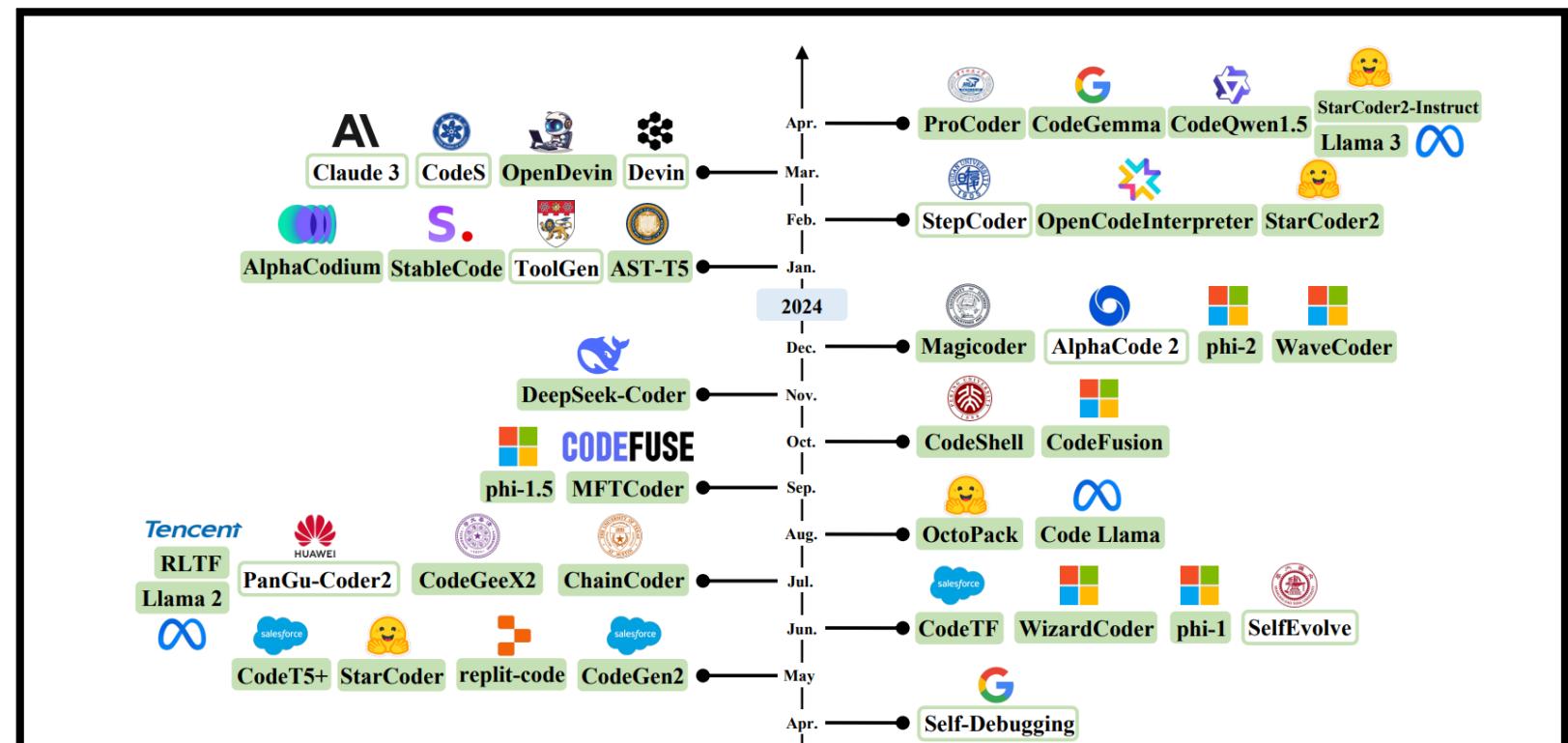
Repoformer: Selective Retrieval for Repository-Level Code Completion

Di Wu¹, Wasi Uddin Ahmad², Dejiao Zhang²,
Murali Krishna Ramanathan², Xiaofei Ma²

¹University of California Los Angeles, ²AWS AI Labs

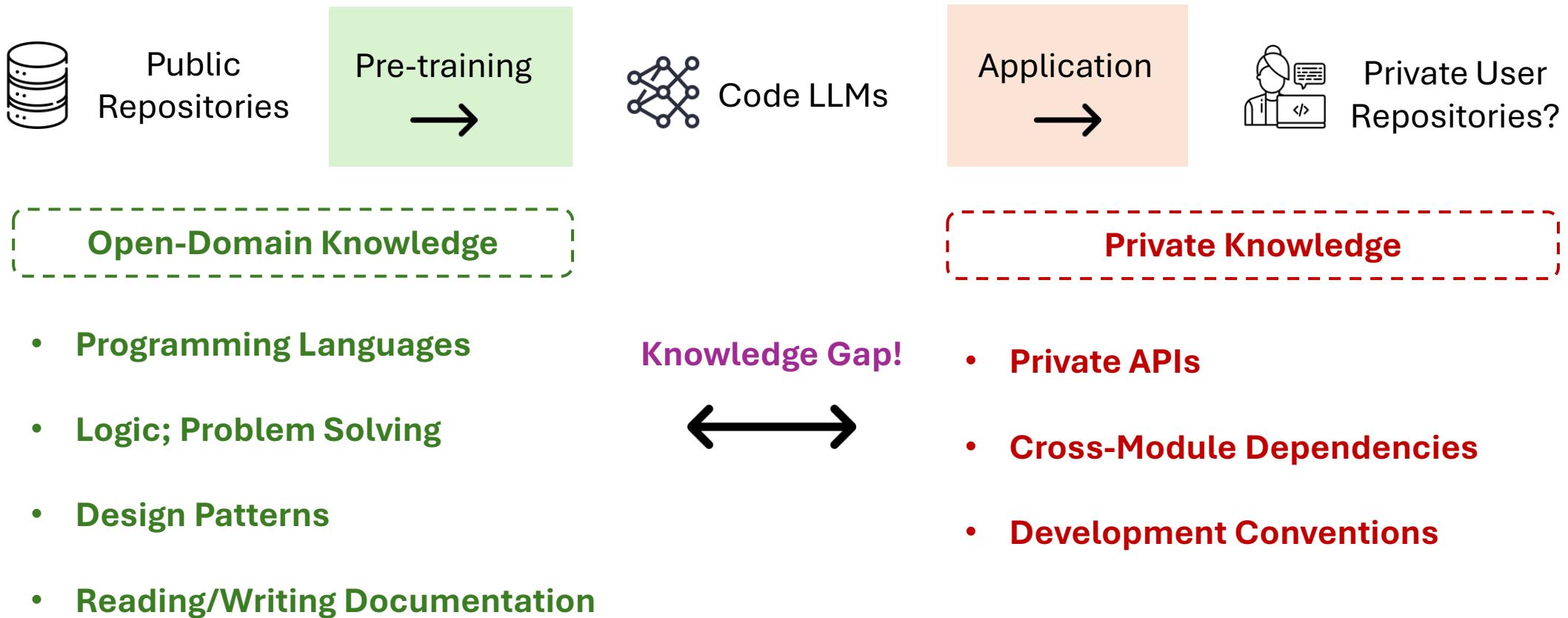
LLMs for Code

- Large language models (LLMs) have been seen as promising solutions to code automation.



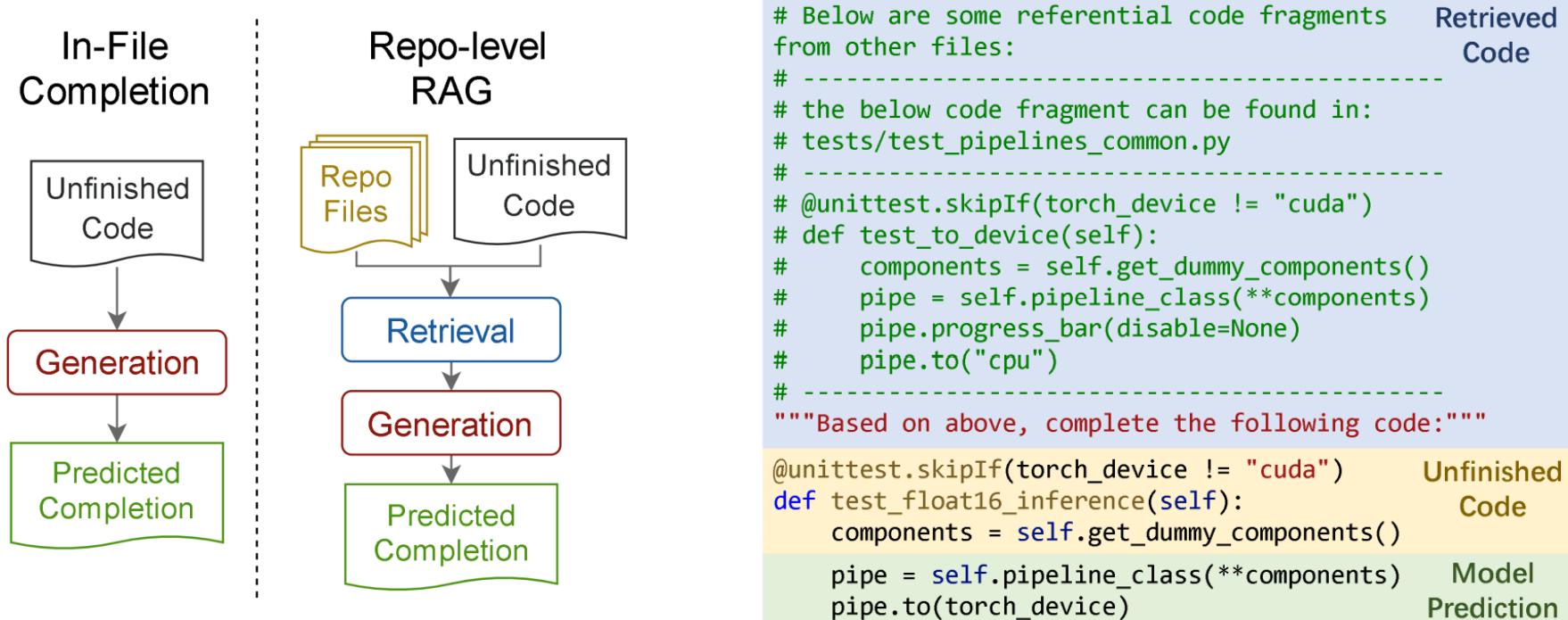
The Knowledge Gap

- However, applying LLMs in ***private repositories*** is challenging.



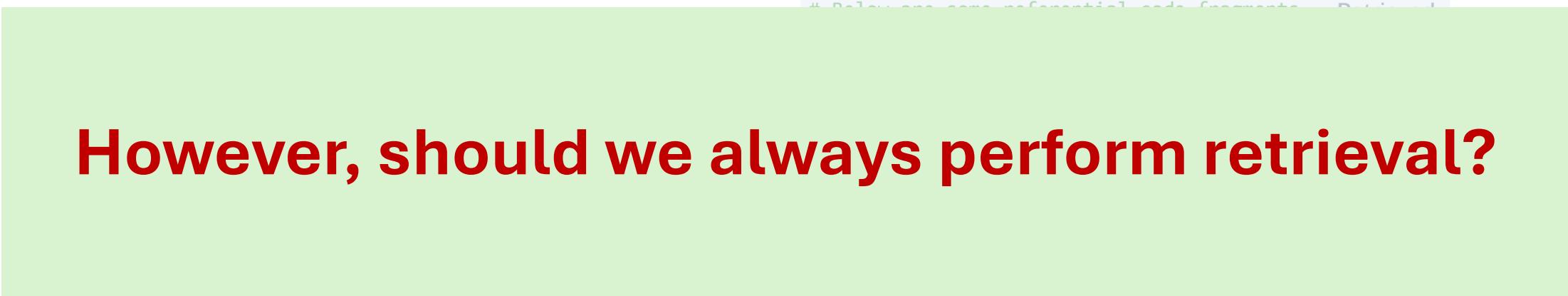
Retrieval-Augmented Generation

- By augmenting LLMs with retrieved repository contexts, RAG improves code completion performance.



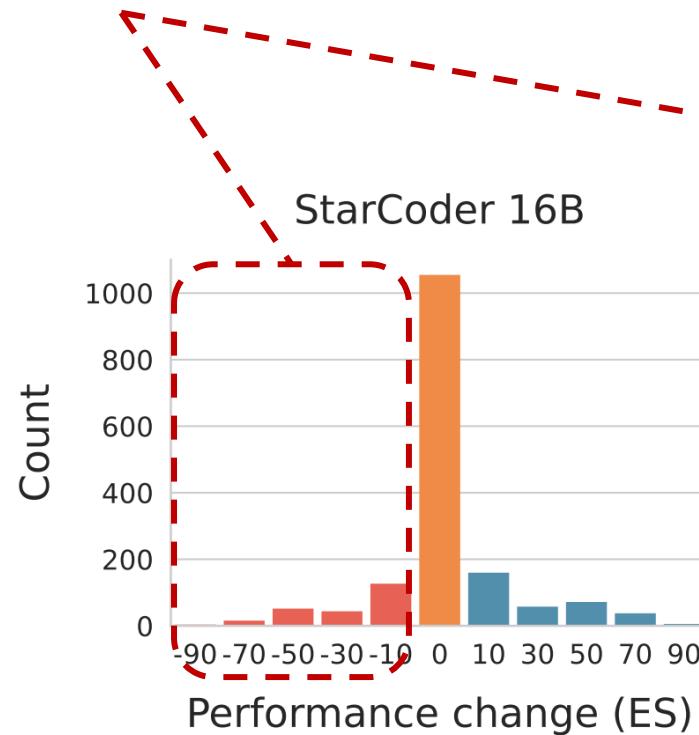
Retrieval-Augmented Generation

- By augmenting LLMs with retrieved repository contexts, RAG improves code completion performance.



Should we always perform retrieval?

- Surprisingly, always augmenting repository-level contexts is both **harmful** to accuracy and **inefficient**, especially for black-box LLMs.

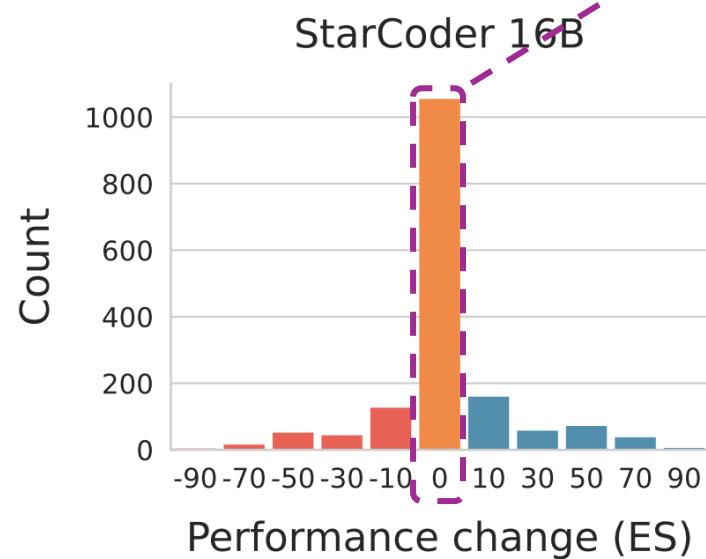


Model	Size	Performance (UT)		UT Change		
		$X_l + X_r$	$X_l + X_r + CC$	\downarrow	$=$	\uparrow
CodeGen-Mono	16B	23.74	24.18	23	407	25
CodeGen-Mono	2B	30.55	32.51	18	400	37
StarCoder	16B	34.73	42.86	16	386	53
StarCoderBase	1B	22.20	25.71	16	407	32

Table 1. The performance change on RepoEval function completion exhibited by four models from retrieved cross-file contexts.

Should we always perform retrieval?

- Surprisingly, always augmenting repository-level contexts is both **harmful** to accuracy and **inefficient**, especially for black-box LLMs.

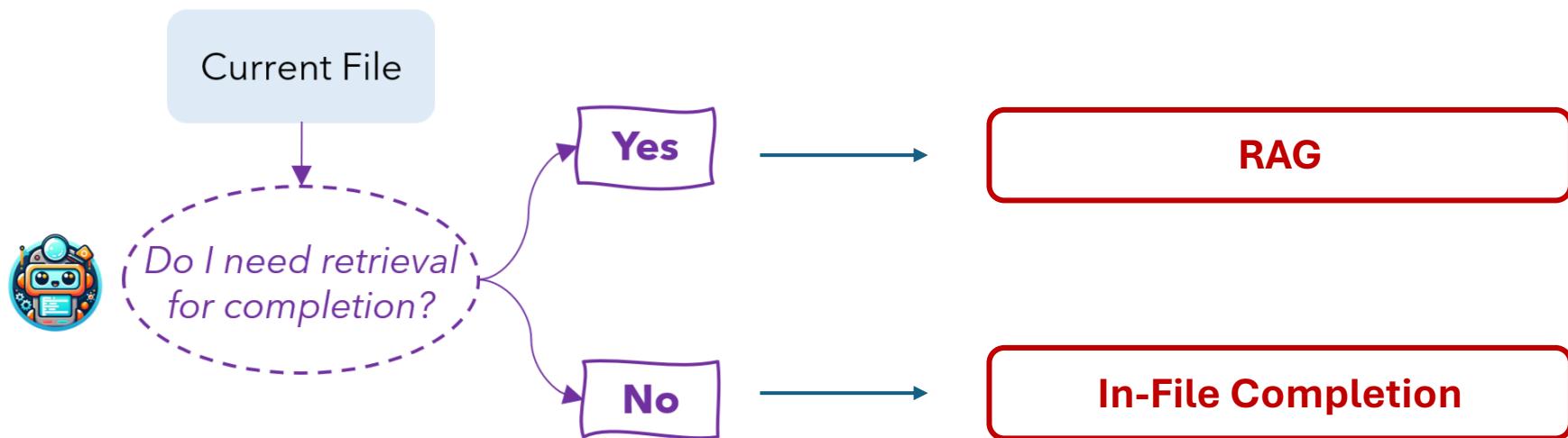


Model	Size	Performance (UT)		UT Change
		$X_l + X_r$	$X_l + X_r + CC$	
CodeGen-Mono	16B	23.74	24.18	23 ↓ 407 = 25 ↑
CodeGen-Mono	2B	30.55	32.51	18 ↓ 400 = 37 ↑
StarCoder	16B	34.73	42.86	16 ↓ 386 = 53 ↑
StarCoderBase	1B	22.20	25.71	16 ↓ 407 = 32 ↑

Table 1. The performance change on RepoEval function completion exhibited by four models from retrieved cross-file contexts.

Solution: Selective RAG

- We propose to **selectively** trigger repository-level retrieval.
- Specifically, our proposal takes the form of **self-assessment**.



Selective RAG Inference

File to Complete

```
import pandas as pd
class TableManager:
    def __init__(self, data):
        self.data = pd.DataFrame(data)
    ...
    def normalize_col(self, col):
        """Normalize the values in col
        to the range [0, 1]."""

```

Selective RAG Inference

File to Complete

No cross-file dependency

Model has high confidence

Clear clues in given context

```
import pandas as pd
class TableManager:
    def __init__(self, data)
        self.data = pd.DataFrame(data)
    ...
    def normalize_col(self, col):
        """Normalize the values in col
        to the range [0, 1]."""

```

Selective RAG Inference

File to Complete

```
import pandas as pd
class TableManager:
    def __init__(self, data)
        self.data = pd.DataFrame(data)
    ...
    def normalize_col(self, col):
        """Normalize the values in col
        to the range [0, 1]."""

```

No cross-file dependency

Model has high confidence

Clear clues in given context

Repoformer

↓ Retrieval Decision

<No Retrieval>

Selective RAG Inference

File to Complete

```
import pandas as pd
class TableManager:
    def __init__(self, data)
        self.data = pd.DataFrame(data)
    ...
    def normalize_col(self, col):
        """Normalize the values in col
        to the range [0, 1]."""

```

No cross-file dependency

Model has high confidence

Clear clues in given context

 Repoformer

↓ **Retrieval Decision**

<No Retrieval>

 Repoformer

↓ **Code Completion**

```
if col in self.data.columns:
    min_val = self.data[col].min()
    max_val = self.data[col].max()
    if min_val != max_val:    # avoid division by zero
        self.data[col] = (self.data[col] - min_val)
        / (max_val - min_val)
    else:
        raise ValueError(f"Column '{col}' does not exist")
```

Selective RAG Inference

File to Complete

```
import pandas as pd
class TableManager:
    def __init__(self, data)
        self.data = pd.DataFrame(data)
    ...
    def normalize_col(self, col):
        """Normalize the values in col
        to the range [0, 1]."""

```

No cross-file dependency

Model has high confidence

Clear clues in given context

Repoformer

↓ Retrieval Decision

<No Retrieval>

Repoformer

↓ Code Completion

```
if col in self.data.columns:
    min_val = self.data[col].min()
    max_val = self.data[col].max()
    if min_val != max_val:  # avoid division by zero
        self.data[col] = (self.data[col] - min_val)
        / (max_val - min_val)
    else:
        raise ValueError(f"Column '{col}' does not exist")
```

File to Complete

```
from training.train_state_repository import TrainStateRepository
from prob_model.posterior.posterior_mixin import CheckpointingMixin
from typing import Path, Dict, Optional

class PosteriorStateRepository(TrainStateRepository, CheckpointingMixin):
    ...
    def extract_calib_keys(self, checkpoint_path, prefix, **kwargs) -> Dict:
```

Local imports

Model has low confidence

Further info desired

Selective RAG Inference

File to Complete

```
import pandas as pd
class TableManager:
    def __init__(self, data)
        self.data = pd.DataFrame(data)
    ...
    def normalize_col(self, col):
        """Normalize the values in col
        to the range [0, 1]."""

```

No cross-file dependency

Model has high confidence

Clear clues in given context

Repoformer

↓ Retrieval Decision

<No Retrieval>

Repoformer

↓ Code Completion

```
if col in self.data.columns:
    min_val = self.data[col].min()
    max_val = self.data[col].max()
    if min_val != max_val:    # avoid division by zero
        self.data[col] = (self.data[col] - min_val)
        / (max_val - min_val)
    else:
        raise ValueError(f"Column '{col}' does not exist")
```

File to Complete

```
from training.train_state_repository import TrainStateRepository
from prob_model.posterior.posterior_mixin import CheckpointingMixin
from typing import Path, Dict, Optional

class PosteriorStateRepository(TrainStateRepository, CheckpointingMixin):
    ...
    def extract_calib_keys(self, checkpoint_path, prefix, **kwargs) -> Dict:
```

Local imports

Model has low confidence

Further info desired

Repoformer

↓ Retrieval Decision

<Retrieval Needed>

Selective RAG Inference

File to Complete

```
import pandas as pd
class TableManager:
    def __init__(self, data)
        self.data = pd.DataFrame(data)
    ...
    def normalize_col(self, col):
        """Normalize the values in col
        to the range [0, 1]."""

```

No cross-file dependency

Model has high confidence

Clear clues in given context

Repoformer

↓ Retrieval Decision

<No Retrieval>

Repoformer

↓ Code Completion

```
if col in self.data.columns:
    min_val = self.data[col].min()
    max_val = self.data[col].max()
    if min_val != max_val: # avoid division by zero
        self.data[col] = (self.data[col] - min_val)
        / (max_val - min_val)
    else:
        raise ValueError(f"Column '{col}' does not exist")
```

File to Complete

```
from training.train_state_repository import TrainStateRepository
from prob_model.posterior.posterior_mixin import CheckpointingMixin
from typing import Path, Dict, Optional

class PosteriorStateRepository(TrainStateRepository, CheckpointingMixin):
    ...
    def extract_calib_keys(self, checkpoint_path, prefix, **kwargs) -> Dict:
```

Local imports

Model has low confidence

Further info desired

Repoformer

↓ Retrieval Decision

<Retrieval Needed>

Retriever

↓ Cross-file Retrieval

CFC 1

CFC 2

CFC 3

CFC 4

Cross-File Context (CFC)

```
// prob_model/posterior/deep_ensemble/
// deep_ensemble_repositories.py
def extract_calib_keys(..) -> Dict:
    return self.extract(
        ["calib_params", "calib Mutable"],
        0, checkpoint_path, prefix,
        **kwargs)
```

Selective RAG Inference

File to Complete

```
import pandas as pd
class TableManager:
    def __init__(self, data)
        self.data = pd.DataFrame(data)
    ...
    def normalize_col(self, col):
        """Normalize the values in col
        to the range [0, 1]."""

```

No cross-file dependency

Model has high confidence

Clear clues in given context

↓ **Retrieval Decision**

<No Retrieval>

↓ **Code Completion**

```
if col in self.data.columns:
    min_val = self.data[col].min()
    max_val = self.data[col].max()
    if min_val != max_val: # avoid division by zero
        self.data[col] = (self.data[col] - min_val)
        / (max_val - min_val)
    else:
        raise ValueError(f"Column '{col}' does not exist")
```

File to Complete

```
from training.train_state_repository import TrainStateRepository
from prob_model.posterior.posterior_mixin import CheckpointingMixin
from typing import Path, Dict, Optional

class PosteriorStateRepository(TrainStateRepository, CheckpointingMixin):
    ...
    def extract_calib_keys(self, checkpoint_path, prefix, **kwargs) -> Dict:
```

Local imports

Model has low confidence

Further info desired

↓ **Retrieval Decision**

<Retrieval Needed>

Retriever

↓ **Cross-file Retrieval**

CFC 1

CFC 2

CFC 3

CFC 4

Repoformer

↓ **Code Completion**

```
return super().extract(
    ["calib_params", "calib Mutable"], checkpoint_path, prefix,
    **kwargs)
```

Cross-File Context (CFC)

```
// prob_model/posterior/deep_ensemble/
// deep_ensemble_repositories.py
def extract_calib_keys(..) -> Dict:
    return self.extract(
        ["calib_params", "calib Mutable"],
        0, checkpoint_path, prefix,
        **kwargs)
```

Selective RAG Inference

- Conveniently modeled as an extension to fill-in-the-middle.

(a) Fill-in-the-middle

Selective RAG Inference

- Conveniently modeled as an extension to fill-in-the-middle.

(a) Fill-in-the-middle

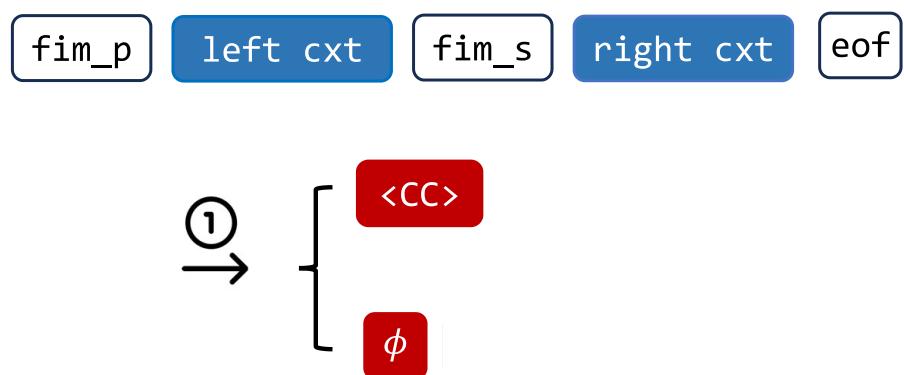
(b) Self-selective RAG

Selective RAG Inference

- Conveniently modeled as an extension to fill-in-the-middle.

(a) Fill-in-the-middle

(b) Self-selective RAG

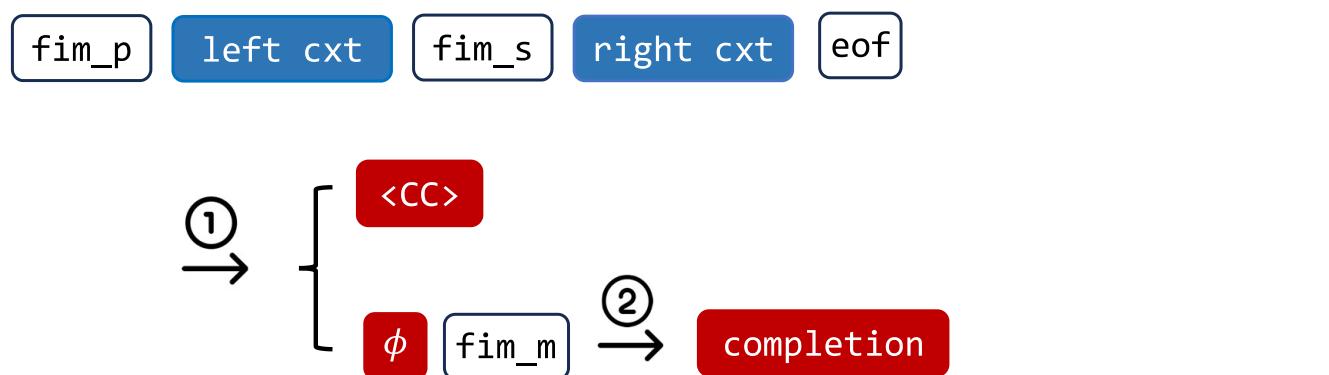


Selective RAG Inference

- Conveniently modeled as an extension to fill-in-the-middle.

(a) Fill-in-the-middle

(b) Self-selective RAG

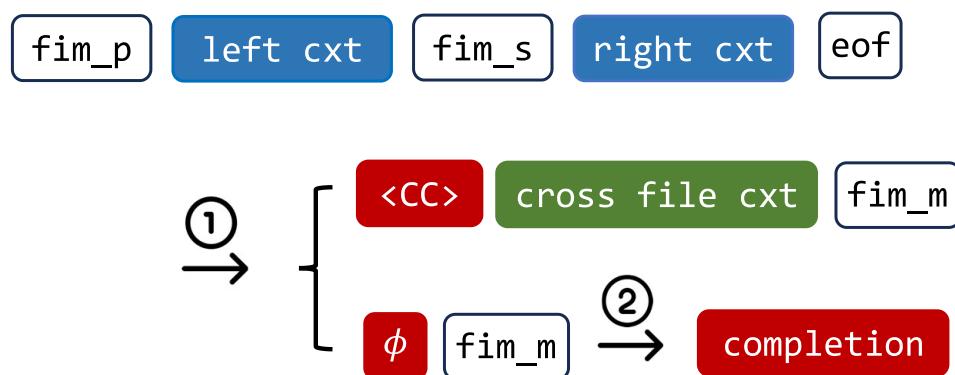


Selective RAG Inference

- Conveniently modeled as an extension to fill-in-the-middle.

(a) Fill-in-the-middle

(b) Self-selective RAG

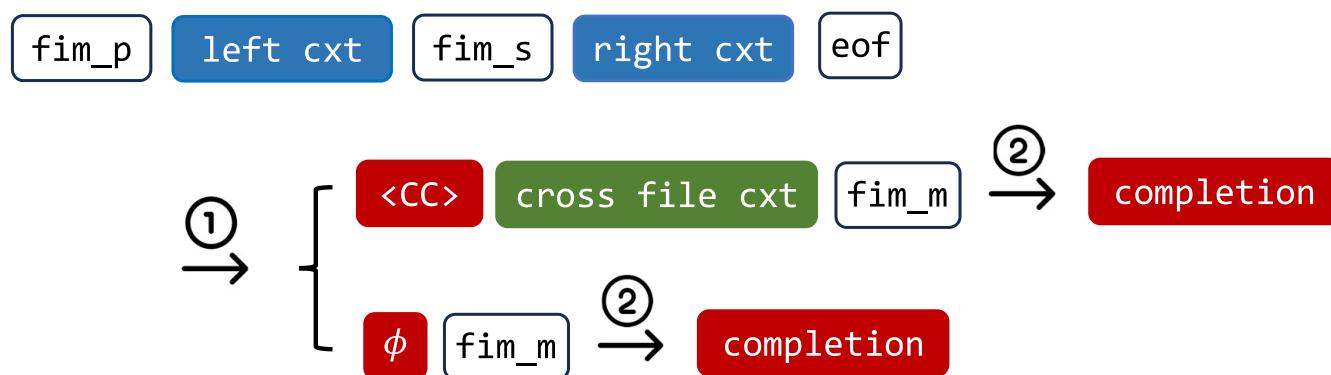


Selective RAG Inference

- Conveniently modeled as an extension to fill-in-the-middle.

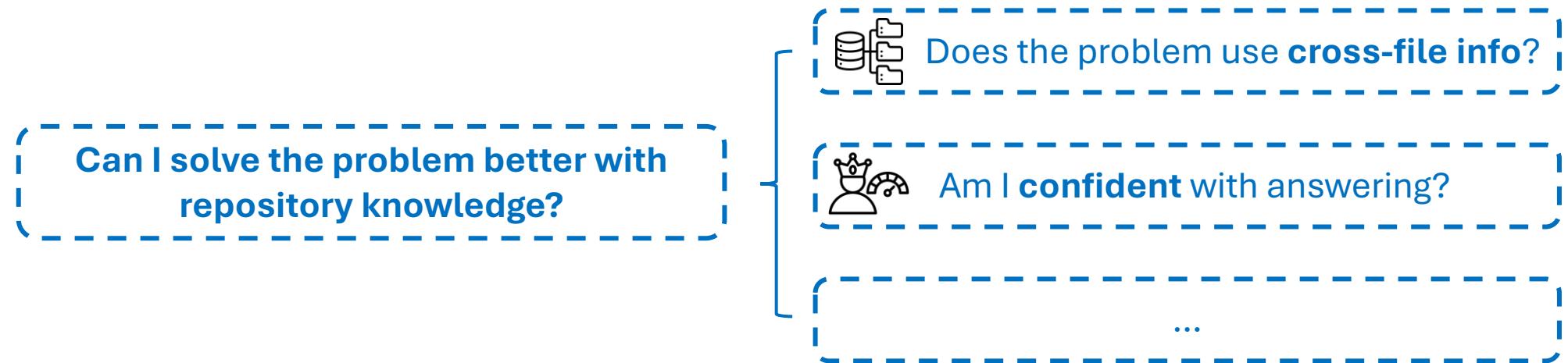
(a) Fill-in-the-middle

(b) Self-selective RAG



Learning Selective RAG

- Desiderata: ***performance-oriented self-reflection***

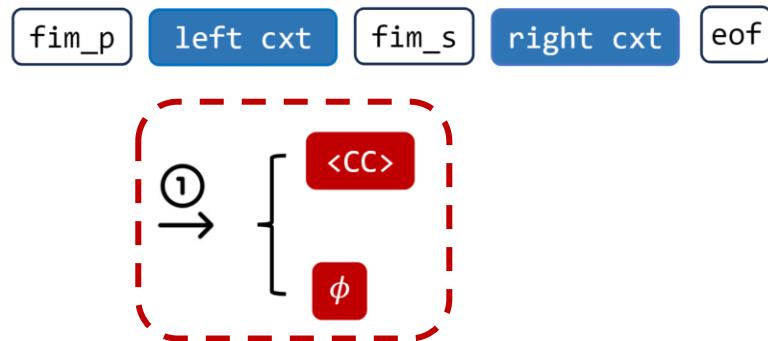


- Insight: we could directly learn from **RAG simulation**
 - **Sample** diverse blanks for code completion.
 - Let the an LLM **attempt** with and without repository-level retrieval.
 - If the completion quality improves, **label retrieval_required = True**.

Self-Supervised Multi-Task Training

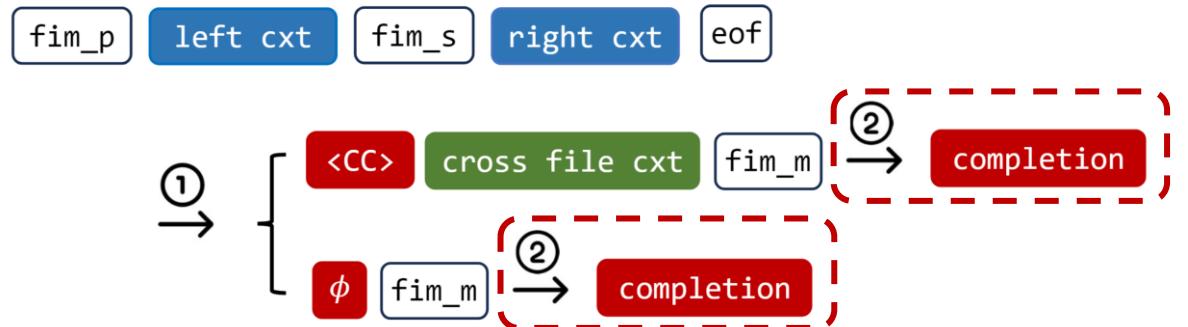
- **Self-Evaluation** for Selective Retrieval

$$\mathcal{L}_{eval} = -\log p_{\mathcal{M}}(\langle cc \rangle | X_l, X_r)$$



- **Code Generation** with Optional Cross-File Context

$$\mathcal{L}_{gen} = \begin{cases} -\log p_{\mathcal{M}}(Y | X_l, X_r, CC), & \text{if } label \\ -\log p_{\mathcal{M}}(Y | X_l, X_r), & \text{otherwise} \end{cases}$$



Accuracy Evaluation

- SOTA completion accuracy on **RepoEval** and **CrossCodeLongEval**, a new benchmark tailored to long-form code completion.

Size	Model	RAG Policy	RepoEval [2]			CrossCodeLongEval(Ours)	
			Line ES	API ES	Function UT	Chunk ES	Function ES
1B	StarCoderBase Repoformer	No	67.77	66.54	22.20	60.09	47.49
		Always	72.30	69.17	25.71	63.73	50.50
		Selective _G	74.50	71.00	24.00	68.08	52.09
		Selective _T	76.00	72.70	28.79	69.97	53.71
3B	StarCoderBase Repoformer	No	72.12	69.02	24.84	64.65	49.88
		Always	76.68	72.62	29.67	67.74	53.39
		Selective _G	77.60	73.60	28.57	70.70	54.47
		Selective _T	79.02	74.96	32.96	72.23	56.24
16B	StarCoder Repoformer	No	76.07	71.00	34.73	69.40	54.20
		Always	79.24	74.50	42.86	71.90	58.06
		Selective _G	78.81	76.23	42.42	73.36	57.71
		Selective _T	80.34	77.93	44.18	75.50	58.93

Table 1: Results on RepoEval and CrossCodeLongEval.

Latency Evaluation

- Repoformer improves **both accuracy and latency** in online serving.

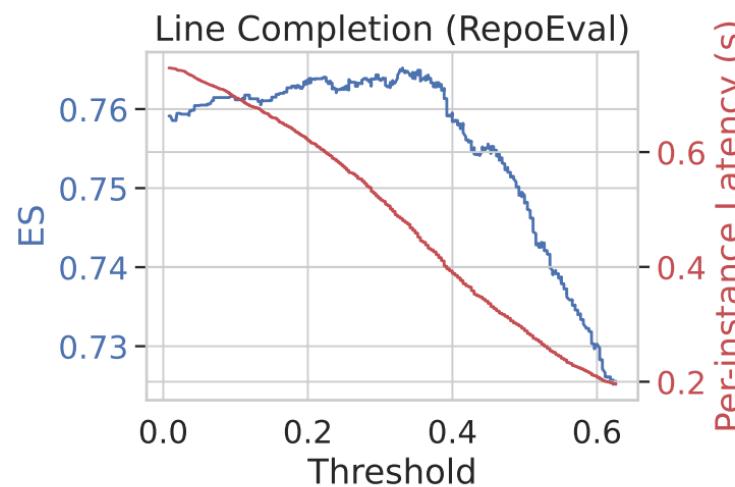
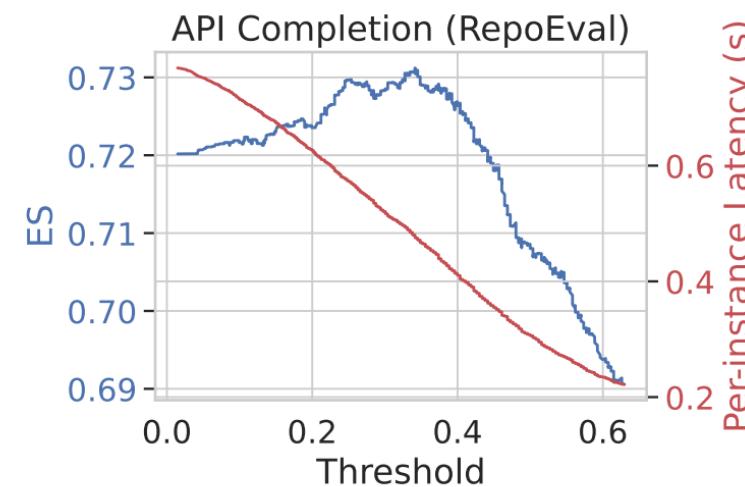
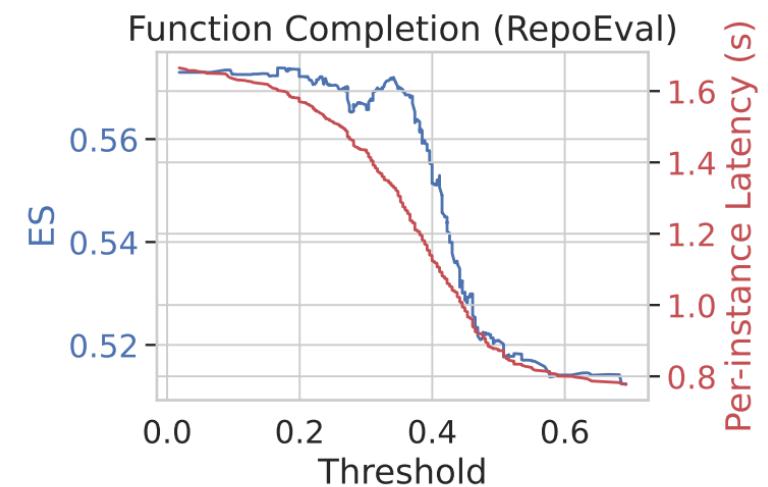


Figure 12. Latency-accuracy trade-off of self-selective RAG for REPOFORMER-1B.

Latency Evaluation

- Repoformer improves **both accuracy and latency** in online serving.

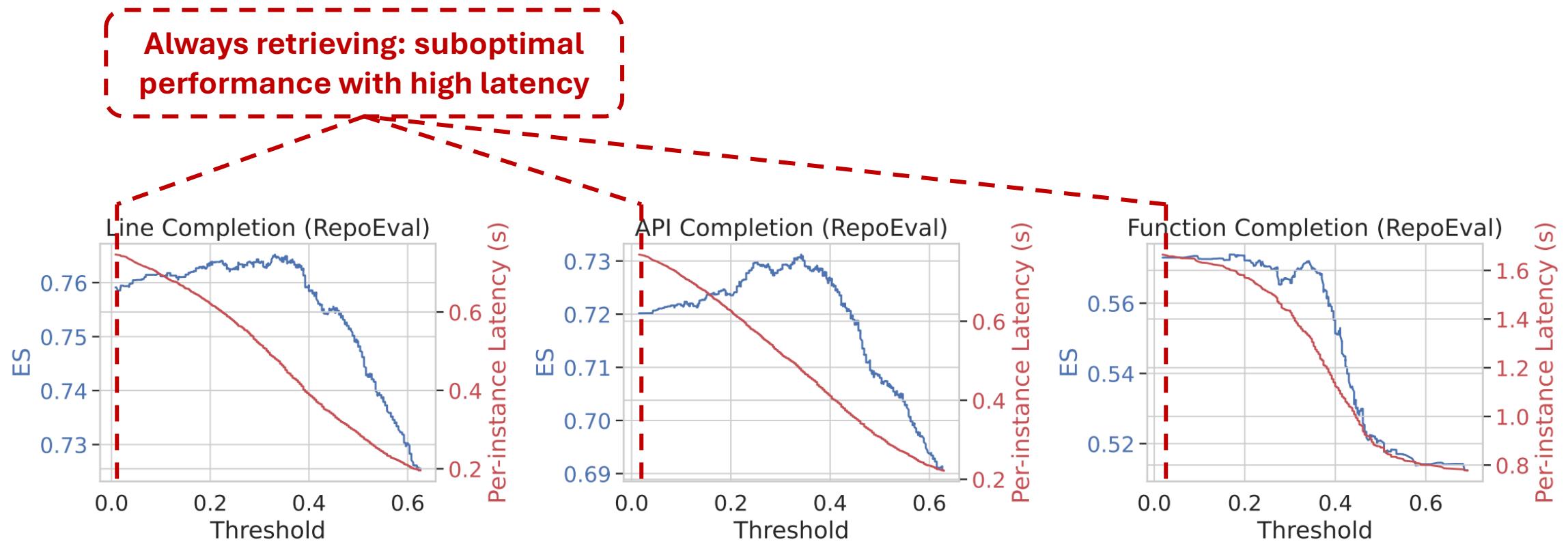


Figure 12. Latency-accuracy trade-off of self-selective RAG for REPOFORMER-1B.

Latency Evaluation

- Repoformer improves **both accuracy and latency** in online serving.

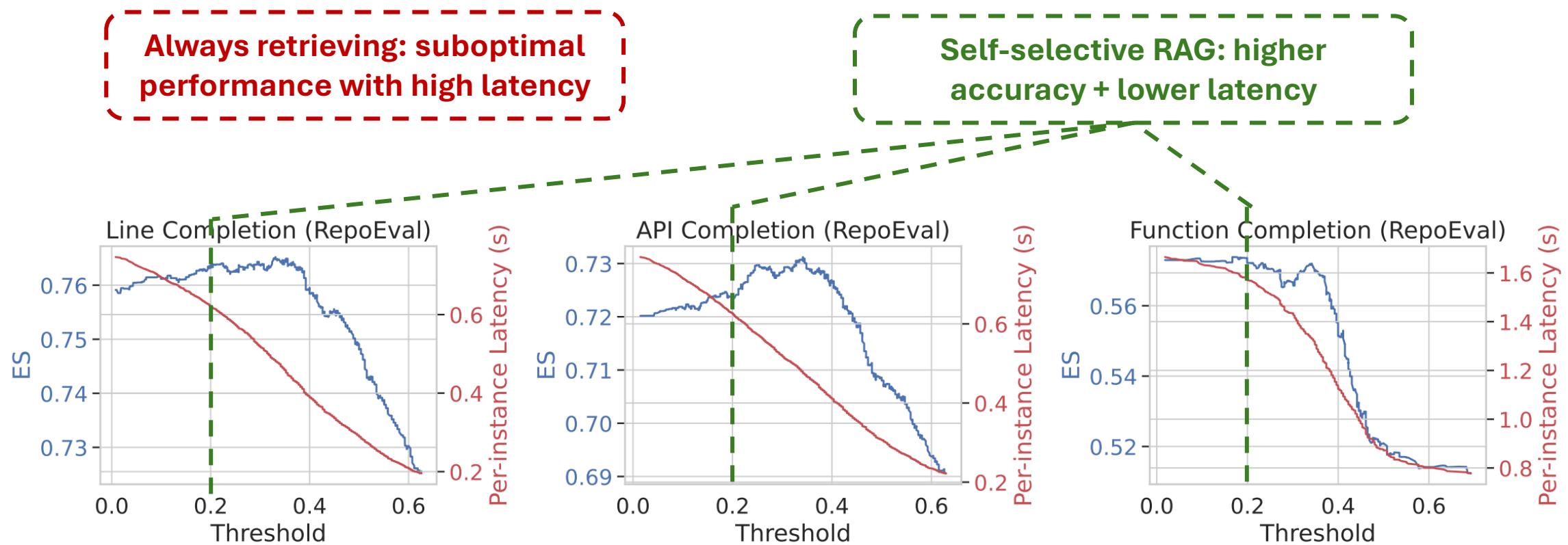


Figure 12. Latency-accuracy trade-off of self-selective RAG for REPOFORMER-1B.

Repoformer as a Plug-and-Play Policy

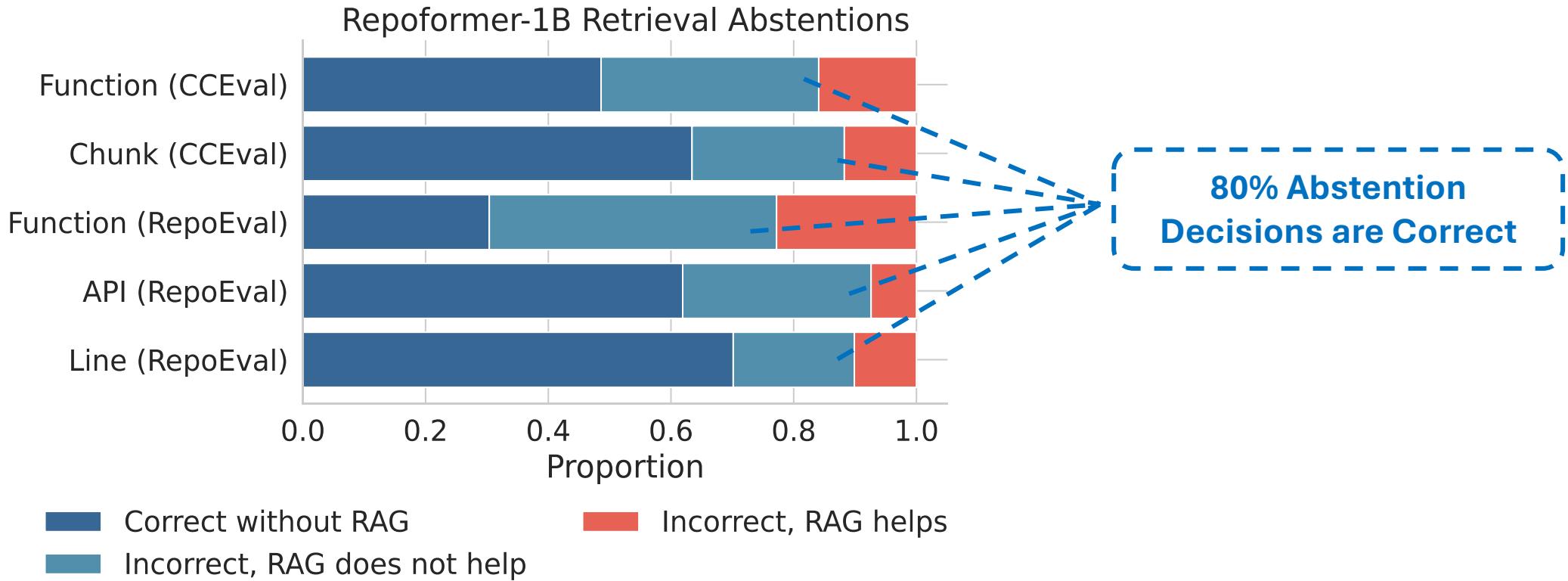
- **Repoformer helps larger models** to prevent uninformative and potentially harmful retrievals.

Model	RAG Policy	API		Line	
		ES	Speedup	ES	Speedup
StarCoderBase-16B	Always Retrieving	74.50	0%	79.24	0%
	Repoformer-1B	74.84	24%	79.48	24%
CodeLlama-16B	Always Retrieving	61.08	0%	61.58	0%
	Repoformer-1B	62.10	32%	62.45	30%
ChatGPT	Always Retrieving	63.38	0%	61.76	0%
	Repoformer-1B	64.01	28%	61.92	18%

Table 2: Accuracy and latency of larger LLMs as the code completion model and with Repoformer-1B as the policy model for selective RAG.

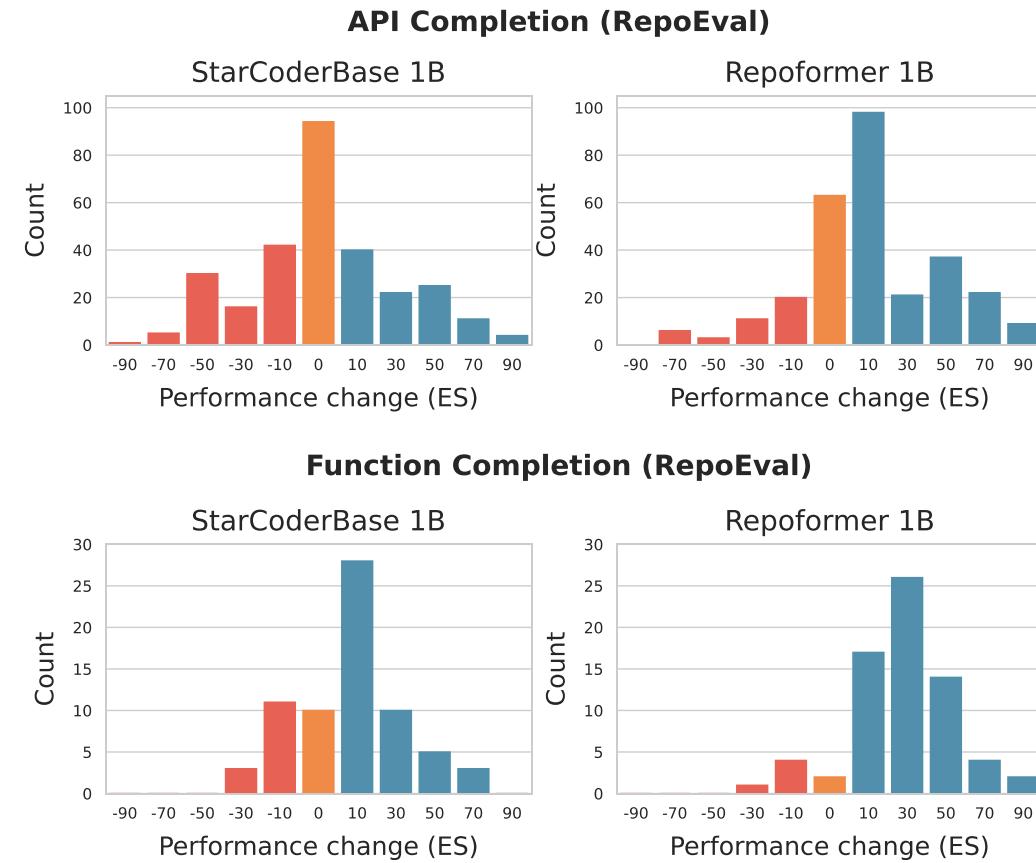
Accuracy of Retrieval Decisions

- Repoformer learns to make accurate abstention judgments.



Robustness to Retrieval

- Repoformer training improves the robustness to noisy retrieval.

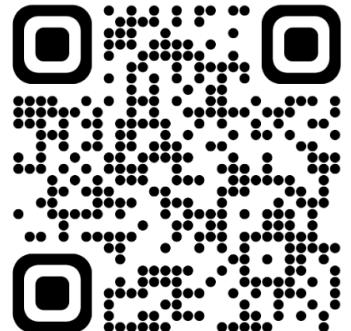


Summary

- We propose **selective retrieval** for repository-level code completion.
- A **self-supervised learning** recipe for retrieval decision + code generation.
- Selective retrieval improves **accuracy** + **latency**
 - **Transferable** across code LLMs.



Paper



Code

Discussion

- Different approaches to “when to retrieve”

