Repoformer: Selective Retrieval for
Repository-Level Code Completion

Di Wu', Wasi Uddin Ahmad?, Dejiao Zhang?,
Murali Krishna Ramanathan?, Xiaofei Ma2

'University of California Los Angeles, 2AWS Al Labs

https://xiaowu0162.github.io/
https://wasiahmad.github.io/
https://dejiao2018.github.io/

| LMs for Code dWs 28,

* Large language models (LLMs) have been seen as promising
solutions to code automation.

s Public ® 6 § =
. o . > StarCoder2-Instruct
Reposrtones A\ o 1@3 O’.g A||:r —@ ProCoder CodeGemma CodeQwenl.5 . = m
5 G ama
Claude 3 CodeS OpenDevin Devin @&—— wi-r e _‘4- =
P t o o .) q ° @ @ FEI'J -_— StepCoder OpenCodelnterpreter StarCoder2
re- ralnlng AlphaCodium StableCode ToolGen AST-TS &= Jan.
[| [|
2",2“ = (o) u N
& Dic ——=@ Magicoder AlphaCode2 phi-2 WaveCoder
TR |
= Nov., = o
& COde LLMS DeepSeek CoderO—\II @ .
= GODEFUSE Oi't- ———@ CodeShell CodeFusion
]Jhi-l.S MFTCoder @— SEIP- o m
Ada ptation Tencent §"4 { -.) Alllg —@ OctoPack Code Llama
RLTF PanGu-Coder2 CodeGeeXZ ChainCoder @&—— JuL @ | | | | .;"::‘;.
Llama 2 | [| [|
o @ ~ e @ Jun. ———@ CodeTF WizardCoder phi-1 SelfEvolve
. . - |
— Appl|Cat|OnS CodeT5+ StarCoder replit-code CodeGen2 .—Mi'.v S
<I>: & Prod ucts Apr. —& Self-Debugging

[1] A Survey on Large Language Models for Code Generation. Jiang et al. 2024

1 =

https://arxiv.org/pdf/2406.00515

The Knowledge Gap

* However, applying LLMs in private repositories is challenging.

= Public Pre-training Application Private User
% Repositories gé Code LLMs itori
X P —_— —_ Repositories?
__________________________ . =
. Open-Domain Knowledge : ! Private Knowledge :
* Programming Languages Knowledge Gap! . Private APIs
* Logic; Problem Solving H * Cross-Module Dependencies

* Design Patterns Development Conventions

* Reading/Writing Documentation

Retrieval-Augmented Generation

* By augmenting LLMs with retrieved repository contexts, RAG improves
code completion performance.

, # Below are some referential code fragments Retrieved

In-File ! Repo-level from other files: Code
Completion ! RAG T

the below code fragment can be found in:

' — # tests/test_pipelines_common.py
Unfinished : Repo Unfinished B o .
niinishe ! Files Code # @unittest.skipIf(torch_device != "cuda")
Code : I # def test_to_device(self):
|
Yy

¥ ’ @unittest.skipIf(torch_device != "cuda") Unfinished

Predicted .
Completion : Predicted def test_floatl6_inference(self): Code
! : components = self.get_dummy_components()
Completion
pipe = self.pipeline_class(**components) Model
pipe.to(torch_device) Prediction

E de components = self.get_dummy_components()
: e pipe = self.pipeline_class(**components)
' [Retrieval # pipe.progress_bar(disable=None)
[Generation] i ¥ 7 # pipe.to("cpu")
' ~ - T T
v : [Generation """Based on above, complete the following code:"""

[2] RepoCoder: Repository-Level Code Completion Through Iterative Retrieval and Generation

https://aclanthology.org/2023.emnlp-main.151.pdf

Retrieval-Augmented Generation aWs {;fi%

However, should we always perform retrieval?

https://aclanthology.org/2023.emnlp-main.151.pdf

Should we always perform retrieval? dWs

* Surprisingly, always augmenting repository-level contexts is both
harmful to accuracy and inefficient, especially for black-box LLMs.

‘T = -—
v T~
. T =a
. Te=a
1 S
‘> StarCoder16B T ==o_
1000 (’ -t Performance (UF) — _ _UT Change

| l Model SIZ | v L X, X 4+ X, +CC Ty -
o 00 l CodeGen-Mono | 16B | 23.74 24.18 23, 407 25
S 600 | : CodeGen-Mono | 2B | 30.55 32.51 18 | 400 37
S 00! : StarCoder 16B | 34.73 42.86 1 16 | 386 53

: I StarCoderBase 1B 22.20 25.71 '_16_) 407 32

|

|

| |

190 70-50-30-19 0 10 30 50 70 90 Table 1. The performance change on RepoEval function comple-

- === tion exhibited by four models from retrieved cross-file contexts.
Performance change (ES)

)

Cfa)// o

Should we always perform retrieval?

* Surprisingly, always augmenting repository-level contexts is both
harmful to accuracy and inefficient, especially for black-box LLMs.

-

7 ~ o
7 ~o
7’ ~
7’ Dl
7 S~
Y ~ -~
P 7’ Dl -~
StarCoder 168 T~
7 ~ .
~ ™
1000 | : Performance (UT) ~UTI Change
I Model S e X, X +X,+CC | | [=) 1
o e] CodeGen-Mono | 16B | 23.74 24.18 23 1407, 25
S 600 y CodeGen-Mono | 2B | 30.55 3251 18 1400, 37
S 400 = StarCoder | 16B | 34.73 42.86 16 1386, 53
I l StarCoderBase 1B 22.20 25.71 16 | 407) 32
200 |
0 - ‘ M Table 1. The performance change on RepoEval function comple-

-90-70-50-30-1¢; 0 110 30 50 70 90 , o ;
= tion exhibited by four models from retrieved cross-file contexts.
Performance change (ES)

Solution: Selective RAG

* We propose to selectively trigger repository-level retrieval.
* Specifically, our proposal takes the form of self-assessment.

Current File

Yes | —— [RAG]

-——— _——

- ~
- 7 N
o\ (Do | need retrieval \
.‘é: . ?
¥y _for completion?

N, ——_-

No EE— [In-File Completion]

Selective RAG Inference

File to Complete

ﬂmport pandas as pd \
class TableManager:
def __init__ (self, data)
self.data = pd.DataFrame(data)

def normalize_col(self, col):
"""Normalize the values in col

\ to the range [0, 1].""" /

Selective RAG Inference

File to Complete

o o

| No cross-file ﬁmport pandas as pd N\
| dependency V| class TableManager:
A -

e def __init__(self, data)

I Model has high \| self.data = pd.DataFrame(data)
confidence [

_________ -'\ def normalize_col(self, col):

I Clearcluesin """Normalize the values in col

'\ given context | \ to the range [0, 1].""" /

Selective RAG Inference

File to Complete

o o

| No cross-file ﬁmport pandas as pd \
| dependency | classTableManager:

o def __init__(self, data)

I Model has high \| self.data = pd.DataFrame(data)
confidence [

_________ -'\ def normalize_col(self, col):

I Clearcluesin | """Normalize the values in col

'\ given context | \ to the range [0, 1].""" /

@ Repoformer l Retrieval Decision

[<No Retrieval>]

Selective RAG Inference

File to Complete

o o

| No cross-file ﬁmport pandas as pd \
| dependency | classTableManager:

e def __init__(self, data)

I Model has high \| self.data = pd.DataFrame(data)
confidence]
- def normalize_col(self, col):

| Clearcluesin | """Normalize the values in col

_given context | \ to the range [0, 1].""" /
@ Repoformer l Retrieval Decision

[<No Retrieval>]

@ Repoformer l Code Completion @
/ if col in self.data.columns: \

min_val = self.data[col]. O
max_val = self.data[col]. 0O
if min_val l=max_val: # avoid divisionby zero

self.data[col] = (self.data[col] - min_val)
/ (max_val - min_val)
else:
k raise ValueError(f"Column "{col}' does not exist") /

Selective RAG Inference

File to Complete File to Complete

:‘- “No cross-ile ﬁrlnport]z:ndas as pd \ :- _Lc:c;h_'m-p; rt-s_] /from training.train_state_repository import TrainStateRepository \
\ _dependency ! | class TableManager: N | from prob_maodel.posterior.posterior_mixin import CheckpointingMixin
_______ - def __init__(self, data) ~ == ==————, | fromtypingimportPath, Dict, Optional
I Model has high self.data = pd.DataFrame(data) I Model has low |
I : l : 1
« _ confidence _ ! def normalize_col(self, col): \ - Confidence ' | (jass PosteriorStateRepository(TrainStateRepository, CheckpointingMixin):
e mmmm == - AP B Bl =TT
: C{ear clues in : Normalize the Uf"!l'j‘es in col : Furthe_*r info : def extract_calib_keys(self, checkpoint_path, prefix, **kwargs) -> Dict:
\ _given context IV \ to the range [0, 1].)\ desired __ 1\

@ Repoformer l Retrieval Decision
[<No Retrieval>]

@ Repoformer l Code Completion @
/ if col in self.data.columns: \

min_val =self.data[col].min()
max_val = self.data[col].max()
if min_val l=max_val: # avoid divisionby zero

self.data[col] = (self.data[col] - min_val)
/ (max_val - min_val)
else:
k raise ValueError(f"Column "{col}' does not exist") /

Selective RAG Inference

File to Complete

o o

I No cross-file | ﬁmport pandas as pd

! _dependency class TableManager:

Tttt def __init__(self, data)

I Model has high \|
confidence !

def normalize_col(self, col):

~

self.data = pd.DataFrame(data)

I Clearclues in | """Normalize the values in col

\ _given context | \ to the range [0, 1].""")
@ Repoformer l Retrieval Decision

[<No Retrieval>]

@ Repoformer l Code Completion @

/ if col in self.data.columns:

min_val =self.data[col].min()
max_val = self.data[col].max()
if min_val l=max_val: # avoid divisionby zero

self.data[col] = (self.data[col] - min_val)
/ (max_val - min_val)
else:

~

k raise ValueError(f"Column "{col}' does not exist") /

I Model has low }
confidence |

—— e = = —

I Further info ‘i
L desired _"

File to Complete

/from training.train_state_repository import TrainStateRepository
from prob_model.posterior.posterior_mixin import CheckpointingMixin
from typing import Path, Dict, Optional

class PosteriorStateRepository(TrainStateRepository, CheckpointingMixin):

def extract_calib_keys(self, checkpoint_path, prefix, **kwargs) -> Dict:

.

~N

J, Retrieval Decision

<Retrieval Needed> J

Selective RAG Inference

File to Complete File to Complete

I No cross-file
dependency |

ﬂmport pandas as pd \
class TableManager: !
def __init__ (self, data)
self.data = pd.DataFrame(data) I

/from training.train_state_repository import TrainStateRepository
from prob_model.posterior.posterior_mixin import CheckpointingMixin
from typing import Path, Dict, Optional

Model has low }
confidence |

I Model has high \|
' confidence _'l

class PosteriorStateRepository(TrainStateRepository, CheckpointingMixin):

.

def normalize_col(self,col): | | ____ _____ .
"""Normalize the values in col | Furtherinfo
to the range [0, 1].""") | desired |

—— e = == =

K \
I Clearcluesin
given context |
-

def extract_calib_keys(self, checkpoint_path, prefix, **kwargs) -> Dict:

-

() Repoformer

l Retrieval Decision S, Repoformer J, Retrieval Decision

Cross-File Context (CFC)

<No Retrieval>

<Retrieval Needed>

)

| crossile Retrieval !
J () (

) Repoformer l Code Completion @

I (CFC 3 CFC 4

/ if col in self.data.columns:

S~

~

/// prob_model/posterior/deep_ensemble/
// deep_ensemble_repositories.py
def extract_calib_keys(..) -> Dict:
return self.extract(
["calib_params", "calib_mutable"],
0, checkpoint_path, prefix,

min_val =self.data[col].min()
max_val = self.data[col].max()
if min_val l=max_val: # avoid divisionby zero
self.data[col] = (self.data[col] - min_val)
/ (max_val - min_val)
else:

raise ValueError(f"Column "{col}' does not exist") /

N

RN

**kwargs)

/

Selective RAG Inference

File to Complete File to Complete

om == == = = T N s R N \
: No cross-file I ﬂrlnport]z:ndas as pd \ : Local imports /from training.train_state_repository import TrainStateRepository \
\ _dependency ! | class TableManager: N | from prob_maodel.posterior.posterior_mixin import CheckpointingMixin
_______ - def __init__(self, data) ~ == ==————, | fromtypingimportPath, Dict, Optional
I Model has high self.data = pd.DataFrame(data) I Model has low |
I : l : 1
\ _ confidence _ ! _ \ - Confidence ' | (jass PosteriorStateRepository(TrainStateRepository, CheckpointingMixin):
_________ . def normalize_col(self, col): e,
: C{ear clues in : Normalize the Uf'!l'j‘es in col : Furthe_*r info : def extract_calib_keys(self, checkpoint_path, prefix, **kwargs) -> Dict:
\ _given context !\ to the range [0, 1].) N _desired __ 1\

@ Repoformer l Retrieval Decision 9 Repoformer J, Retrieval Decision

J Cross-File Context (CFC)

[<No Retrieval> J <Retrieval Needed>

~

p l/// prob_model/posterior/deep_ensemble/

3 . . . , // deep_ensemble_repositories.py
Repoformer Code Completion ? Retriever l Cross-file Retrieval , def extract_calib_keys(..) -> Dict:
/

returnself.extract(

/ \ ["calib_params", "calib_mutable"],
if col in self.data.columns: [CFC1] [CFC2] [CFC3] [CFc4a 0, checkpoint_path, prefix,

min_val =self.data[col].min() <~ “kwargs))

max_val = self.data[col].max() @ Repoformer l Code Completion @

if min_val l=max_val: # avoid divisionby zero

self.data[col] = (self.data[col] - min_val)
/ (max_val - min_val) return super(). (
else: ["calib_params“, "calib_mutable"], checkpoint_path, prefix,

k raise ValueError(f"Column '{col}' does not exist") / **kwargs)

Selective RAG Inference

* Conveniently modeled as an extension to fill-in-the-middle.

(a) Fill-in-the-middle

left cxt right cxt —al completion

Selective RAG Inference

* Conveniently modeled as an extension to fill-in-the-middle.

(a) Fill-in-the-middle

left cxt right cxt e dl completion

(b) Self-selective RAG

Selective RAG Inference

* Conveniently modeled as an extension to fill-in-the-middle.

(a) Fill-in-the-middle

left cxt right cxt e dl completion

(b) Self-selective RAG
o
Q {

Selective RAG Inference

* Conveniently modeled as an extension to fill-in-the-middle.

(a) Fill-in-the-middle

left cxt right cxt e dl completion

(b) Self-selective RAG
o
— { ®

e dl completion

Selective RAG Inference

* Conveniently modeled as an extension to fill-in-the-middle.

(a) Fill-in-the-middle

left cxt right cxt e dl completion

(b) Self-selective RAG

left cxt right cxt
o
{ ©)
e dll COmpletion

Selective RAG Inference

* Conveniently modeled as an extension to fill-in-the-middle.

(a) Fill-in-the-middle

left cxt right cxt e dl completion

(b) Self-selective RAG

left oxt right cxt
. 2y oot
{ @
—_— completion

Learning Selective RAG

* Desiderata: performance-oriented self-reflection

S I S S S S B B B B B B B B S B B B B s .y

/
I Canlsolve the problem better with
repository knowledge?

S I S S S S B B DS DS B B B B B B B B e e

* Insight: we could directly learn from RAG simulation
 Sample diverse blanks for code completion.
* Letthe an LLM attempt with and without repository-level retrieval.
* |f the completion quality improves, label retrieval_required = True.

Self-Supervised Multi-Task Training

e Self-Evaluation for Selective Retrieval

g EEm mEmm Em o .

Leval = —1ngM(<cc>|X[,Xr) I{® <cc> e
: {
\

* Code Generation with Optional Cross-File Context

s —logpm(Y Xy, X, CCY, if label R Tmm=== \
T log pm(Y X0, X, otherwise [Finm '__)_ °1t”
H ———————
n fim_ m |—) completion I

aws

Accuracy Evaluation

* SOTA completion accuracy on RepoEval and CrossCodelLongEval, a
new benchmark tailored to long-form code completion.

RepoEval [2] CrossCodelLongEval(Ours)

Size Model RAG Policy Line | APl Function Chunk Function
ES | ES uTt ES ES
StarCoderBase No 67.77 66.54| 2220 | 60.09 47.49
1B Always 72.30 1 69.17 1 25.71 63.73 50.50
Selectiveg | 74.50 71.00 24.00 @ 68.08 52.09
Repoformer ,
_ SelectiveT _76.00_72.70_ 28.79 _ 69.97 53.71
StarCoderBase No 72.12 1 69.02 1 24.84 64.65 49.88
3B Always | 76.68 72.62| 29.67 @ 67.74 53.39
Selectiveg | 77.60 73.60 2857 70.70 54 47
Repoformer _
Selectiver 79.02/74.96 32.96 72.23 56.24
StarCod No 76.07 71.00| 34.73 | 69.40 54.20
op OGN Always | 79.24 7450 42.86 | 71.90 | 58.06
Selectiveg | 78.81 | 76.23 | 42.42 73.36 57.71
Repoformer _
Selectiver 180.34 77.93) 44.18 75.50 58.93

Table 1:Results on RepoEval and CrossCodelLongEval.

Latency Evaluation

* Repoformer improves both accuracy and latency in online serving.

Line Completion (RepoEval) i APl Completion (RepoEval) w Function Completion (RepoEval)
0.76- > 073 > W 1.6
@ o 0.56 -
-0.6 & 0.72- 0.6 o ' -1.4
n 0-757 3 n 5 n
L 8 w 0.71- 8 W 0.54- -1.2
0.74- -0.4 c -0.4 S
S 0.70- TS -1.0
)] wn
0.73- c c 0.52-
-0.2 5 0.69 - 025 0.8
0.0 0.2 0.4 0.6 e 0.0 0.2 0.4 0.6 o 0.0 0.2 0.4 0.6
Threshold Threshold Threshold

Figure 12. Latency-accuracy trade-off of self-selective RAG for REPOFORMER-1B.

Per-instance Latency (s)

Latency Evaluation

* Repoformer improves both accuracy and latency in online serving.

, Always retrieving: suboptimal
I performance with high latency

—_—
—_—
—
—_—

~ ~
L\PI Completion (RepoEval) Fu-rl'lction Completion (RepoEval)

0 | v 0
I | 0.56-1 \\
0.6% 0.72- I ‘0.6% I —1_4%
— | — W | -
0 00.71- Y W54 1.2
-0.4 & ! _0.4 S I c
g 070+ s ' -1.0 8
f= ! c 0.52-1 c
- v v -0.8 o
0.2 @ 0.69 - -0.2 0 I [
0.0 0.2 0.4 0.6 a- 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 a-
Threshold Threshold Threshold

Figure 12. Latency-accuracy trade-off of self-selective RAG for REPOFORMER-1B.

Latency Evaluation

* Repoformer improves both accuracy and latency in online serving.

, Always retrieving: suboptimal

(
, Self-selective RAG: higher :
I performance with high latency

l accuracy + lower latency :

API Corr'hpletlon (RepoEval) Function Eompletion (RepoEval)

ES

0 “w 0
0.73-
0.76- 9 ! g | HA‘\ "16Q
062 0.72- : 0gld 0967 | 1.4
0.75- © © ©
wn | wn |
0 00.71- Y W54 1.2
0.74- -0.4 & I aaC I c
© 0'4 (18] (o]
2 0.70 - | 42 | -1.0 +
0.73- < I c 0.52- l c
- L _ . -0.8 »
0.0 0.2 0.4 0.6 e 0.0 0.2 0.4 0.6 o 0.0 0.2 0.4 0.6 e
Threshold Threshold Threshold

Figure 12. Latency-accuracy trade-off of self-selective RAG for REPOFORMER-1B.

Repoformer as a Plug-and-Play Policy

aWS {L//G/Ji

J_/\—A/ A)

* Repoformer helps larger models to prevent uninformative and
potentially harmful retrievals.

API Line
M | RAG Poli
ode G Policy ES Speedup ES Speedup
Always Retrieving 74.50 0% 79.24 0%
StarCoderBase-168 Repoformer 1B 74.84 24% 79.48 24%:
Always Retrieving 61.08 0% 6158 0%
Codellama-16B (= = ~=/CUNB2 02 0 D0 R
Peeemai®® [Repoformer 18 6210 32% _ 6245 _30%)
0 0
ChatGPT [f\ways Retrieving 6338 | 0% _6L76_ 0%
r . Repoformer-1B 64.01 28% 6192 18%

Table 2:Accuracy and latency of larger LLMs as the code completion

model and with Repoformer-1B as the policy model for selective RAG.

. o adWS
Accuracy of Retrieval Decisions N—""

* Repoformer learns to make accurate abstention judgments.

Repoformer-1B Retrieval Abstentions

- Tt \,
~~~~~ o Abstention

Function (RepoEval) _—- _____ Pl Decisions are Correct :

API (RepoEval) —_l

: 0.4 :

Proportlon

B Correct without RAG B Incorrect, RAG helps
B [ncorrect, RAG does not help

-— em e e - - . . . - . . -




. aws
Robustness to Retrieval N

* Repoformer training improves the robustness to noisy retrieval.

APl Completion (RepoEval)

StarCoderBase 1B Repoformer 1B
100 100
80 80
-+ -+
C 60 [ 60
- =]
o (@]
O 40 O 40
- I Ill \ Il
=l . ., =_mull || -
-90 -70 -50 -30 -10 0 10 30 50 70 90 -90 -70 -50 -30 -10 0O 10 30 50 70 90
Performance change (ES) Performance change (ES)
Function Completion (RepoEval)
StarCoderBase 1B Repoformer 1B
30 30
25 25
- 20 - 20
5 5
) 15 ) 15
© 10 o 10
o O .- o e I | ™
-90 -70 -50 -30 -10 O 10 30 50 70 90 -90 -70 -50 -30 -10 O 10 30 50 70 90

Performance change (ES) Performance change (ES)



dWS$S

Summary

* We propose selective retrieval for repository-level code completion.
* A self-supervised learning recipe for retrieval decision + code generation.

* Selective retrieval improves accuracy + latency
* Transferable across code LLMs.




Discussion

* Different approaches to “when to retrieve”

|( When and how to rely on :
I I I retrievalin the KNN-LM

Question Difficulty Model Uncertainty Retrieval Quality
Performance-Oriented Learning



https://arxiv.org/abs/2310.11511
https://arxiv.org/abs/2305.06983
https://aclanthology.org/2022.findings-emnlp.218/
https://aclanthology.org/2022.findings-emnlp.218/
https://arxiv.org/pdf/2109.04212
https://arxiv.org/pdf/2310.04408
https://arxiv.org/abs/2310.05002
https://arxiv.org/abs/2403.10059

	Slide 1: Repoformer: Selective Retrieval for Repository-Level Code Completion
	Slide 2: LLMs for Code
	Slide 3: The Knowledge Gap
	Slide 4: Retrieval-Augmented Generation
	Slide 5: Retrieval-Augmented Generation
	Slide 6: Should we always perform retrieval?
	Slide 7
	Slide 8: Solution: Selective RAG
	Slide 9: Selective RAG Inference
	Slide 10: Selective RAG Inference
	Slide 11
	Slide 12: Selective RAG Inference
	Slide 13: Selective RAG Inference
	Slide 14: Selective RAG Inference
	Slide 15: Selective RAG Inference
	Slide 16: Selective RAG Inference
	Slide 17: Selective RAG Inference
	Slide 18: Selective RAG Inference
	Slide 19: Selective RAG Inference
	Slide 20: Selective RAG Inference
	Slide 21: Selective RAG Inference
	Slide 22: Selective RAG Inference
	Slide 23: Learning Selective RAG
	Slide 24: Self-Supervised Multi-Task Training
	Slide 25: Accuracy Evaluation
	Slide 26: Latency Evaluation
	Slide 27: Latency Evaluation
	Slide 28: Latency Evaluation
	Slide 29: Repoformer as a Plug-and-Play Policy
	Slide 30: Accuracy of Retrieval Decisions
	Slide 31: Robustness to Retrieval
	Slide 32: Summary
	Slide 33: Discussion

