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Overview
Formulated the training of neural networks as
kernel learning.
Provided qualitative convergence guarantee of
two-layer neural networks in the mean-field
regime under mild conditions.
Proved the superiority of mean-field neural
networks to fixed kernel methods.
Proposed label noise mean-field Langevin
dynamics and proved it leads to a "robust" kernel.

Problem Settings
Mean-field Neural Networks
Consider the following two-layer neural networks:

In the over-parameterized regime , 
converges to the following mean-field limit:

Another Parametrization
To separate the dynamics of the first layer and the
second layer, we consider the following (equivalent)
parametrization:

: the conditional expectation of 
: the marginal distribution of .

Connection to Kernel Methods
By fixing the distribution , the above model is
equivalent to the kernel method with the kernel

 Training of the first distribution is equivalent to
kernel learning = feature learning.

Convergence Analysis
Q. Is it possible to learn the optimal kernel using
gradient-based algorithms?
Objective Function
We consider the empirical risk minimization problem
with the squared loss and ridge regularization:

Mean-field Langevin Dynamics (MFLD)
The mean-field Langevin dynamics is

a continuous limit of noisy gradient descent
used to solve  for a certain
functional 

 It is difficult to prove the qualitative convergence of
MFLD for  since each neuron  is not
bounded nor Lipschitz continuous w.r.t. .

Two-timescale Limit
If the learning rate of the second layer is much faster
than the first layer, the second layer converges
instantly to the optimum  since  is convex w.r.t. .

Problem is reduced to minimization on 

Run the MFLD for  to solve the minimization
of 

Main Results
Let  be the optimal distribution and  be the
distribution of  at time . For any , we have

 Linear convergence to the global optimum

Key Observation
 is convex although  is not linear in 

Estimation Error Analysis
Q. Does adapted kernel help generalization?
Barron Space
Barron space is a union of multiple RKHSs:

Main Results
Assume that  for a certain .

Mean-field neural networks can learn the target
function with  samples,
Any linear estimator (e.g., kernel ridge regression)
requires at least  samples for a fixed ,

with high probability.
 Adapted kernel achieves better sample complexity

Label Noise MFLD
Q. Is there a simple way to obtain a robust kernel?
Label Noise MFLD
Training the second layer with noisy label

 implicitly solves the
following minimization problem:

 is the degrees of freedom or effective dimension
of the kernel  and corresponds to the variance.

 Label noise leads to small  & avoids overfitting
Numerical Experiments

Label noise reduces the degrees of freedom
Label noise improves the generalization error


