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Overview
e Formulated the training of neural networks as
kernel learning.

* Provided qualitative convergence guarantee of
two-layer neural networks in the mean-field
regime under mild conditions.

®* Proved the superiority of mean-field neural
networks to fixed kernel methods.

® Proposed label noise mean-field Langevin
dynamics and proved it leads to a "robust” kernel.

Problem Settings

Mean-field Neural Networks
Consider the following two-layer neural networks:

| M
f(z; a, {w; }L,) = Vi Zaih(a};wi)
i=1

In the over-parameterized regime M — oo, f
converges to the following mean-field limit:

f(x; P) := /ah(m;fw)dP(a, w)

Another Parametrization

To separate the dynamics of the first layer and the
second layer, we consider the following (equivalent)
parametrization:

Fa; a, 1) = / a(w)h(z; w)dp(w),

e a(w): the conditional expectation of a

e u(w): the marginal distribution of w.

Connection to Kernel Methods
By fixing the distribution i, the above model is
equivalent to the kernel method with the kernel

(e, 2') = [ B w)h(@'s0)dp(w)

< Training of the first distribution is equivalent to
kernel learning = feature learning.
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Convergence Anqlxsis

Q. Is it possible to learn the optimal kernel using
gradient-based algorithms?

Objective Function
We consider the empirical risk minimization problem
with the squared loss and ridge regularization:

1 & by Xy o
F(P)=F(a,p) == (f(zi;a,1) —4:)* + E, | Z-a(w)® + THwH%

n ‘= 2

Mean-field Langevin Dynamics iMFLD)

The mean-field Langevin dynamics is

® a continuous limit of noisy gradient descent

e used to solve min, L(u) + AEnt(u) for a certain
functional L

0L ()
op

d6; = —V (6)dt + v2XdB,,

A It is difficult to prove the qualitative convergence of
MFLD for 6§ = (a,w) since each neuron ah(z;w) is not
bounded nor Lipschitz continuous w.r.t. (a, w).

Two-timescale Limit

If the learning rate of the second layer is much faster
than the first layer, the second layer converges
instantly to the optimum a, since F'is convex w.r.t. a.

® Problem is reduced to minimization on u
G(u) = F(ay, p) = min F(a, p)
e Run the MFLD for 8 = w to solve the minimization

of G(1) = G(p) + AEnt(u)

Main Results
Let u* be the optimal distribution and u; be the
distribution of w at time t. For any ¢ > 0, we have

G(ue) — G(u") < exp(—2aAt)(G(ro) — G(1™))

< Linear convergence to the global optimum

Key Observation
e GG(u) is convex although f(x; ) is not linear in
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Estimation Error Analysis

Q. Does adapted kernel help generalization?

Barron Space
Barron space is a union of multiple RKHSs:

By = {f(w;av :u) ‘ KL(M? N(07 1)) < M, Ha’HLz(,u) < OO}
| fll 8, = inf {[|allz2u) | (250, 1) = £}

Main Results
Assume that f° € By, || f°[|3,, < R for a certain M, R.

e Mean-field neural networks can learn the target
function with O(dlogd) samples,

* Any linear estimator (e.g., kernel ridge regression)
requires at least O(d*) samples for a fixed k,

with high probability.
<% Adapted kernel achieves better sample complexity

Label Noise MFLD

Q. Is there a simple way to obtain a robust kernel?

Label Noise MFLD

raining the second layer with noisy label
9; = °(x;) + &(& ~ Unif([—a, d])) implicitly solves the
following minimization problem:

b6n
d(u) is the degrees of freedom or effective dimension
of the kernel k,, and corresponds to the variance.

2 Label noise leads to small d(u) & avoids overfitting

Numerical Experiments
* | abel noise reduces the degrees of freedom

* | abel noise improves the generalization error
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