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What is Evidential Deep
Learning (EDL)?



Idea of EDL

Learn a second-order distribution directly by which both aleatoric and
epistemic uncertainty can be disentangled predicted.
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Evidential Deep Learning for Classification

Dirichlet-Categorical Model
• level 1: y ∼ Cat(θ) with θ ∈ ∆K

• level 2: θ ∼ Dir(m) with m ∈ RK
+

Fig. 1: Different levels of predictionsa (binary
classification)

aWimmer et al., “Quantifying aleatoric and epistemic
uncertainty in machine learning: Are conditional entropy and
mutual information appropriate measures?”
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Evidential Deep Learning for Regression

Normal-Inverse-Gamma Model

• level 1: y ∼ N (µ, σ2) with µ ∈ R, σ2 ∈ R+

• level 2: (µ, σ2) ∼ N-Γ−1(m) with m = (γ, ν, α, β) ∈ R × R3
+

Fig. 2: Results of Deep Evidential Regression1 reproduced for two different runs2

1Amini et al., “Deep evidential regression”.
2Meinert, Gawlikowski, and Lavin, “The unreasonable effectiveness of deep evidential regression”. 4
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Choose your Distribution!

Problem Likelihood Conjugate prior

classification3 y ∼ Cat(θ) θ ∼ Dir(m)
θ ∈ ∆K m ∈ RK

+

regression (univariate)4 y ∼ N (µ, σ2) θ ∼ N-Γ−1(m)
µ ∈ R, σ2 ∈ R+ m = (γ, ν, α, β) ∈ R × R3

+

regression (multivariate)5 y ∼ N (µ, Σ) θ ∼ NIW (m)
µ ∈ RD , Σ ∈ RD×D m = (µ0, κ, ν, Φ)

point processes y ∼ Pois(θ) θ ∼ Γ(m)
θ ∈ R+ m = (α, β) ∈ R2

+

θ(x, ϕ) : X → Θ (1st-order predictor), m(x, ϕ) : X → M (2nd-order predictor)
3Sensoy, Kaplan, and Kandemir, “Evidential deep learning to quantify classification uncertainty”.
4Amini et al., “Deep evidential regression”.
5Meinert and Lavin, “Multivariate deep evidential regression”.
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Flaws of EDL

While showing good results in downstream tasks, several critical analyses show theoretical flaws
of EDL:

• Non-Convergence in the Classification case6

• Non-Convergence in the Regression Case7

• Non-Properness of its Loss functions8

−→ Our approach: Does the learned second order distribution represent the (epistemic)
uncertainty of the 1st-order parameters in a faithful way?

6Bengs, Hüllermeier, and Waegeman, “Pitfalls of epistemic uncertainty quantification through loss minimisation”.
7Meinert, Gawlikowski, and Lavin, “The unreasonable effectiveness of deep evidential regression”.
8Bengs, Hüllermeier, and Waegeman, “On second-order scoring rules for epistemic uncertainty quantification”.
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Comparing 1st and 2nd-Order
Risk Minimization



1st-Order vs 2nd-Order Risk Minimization

1st-Order Risk Minimization
• Loss function (e.g., NLL)

L1 : Y × P(Y) → R

• Risk minimization

min
Φ

N∑
i=1

L1(yi , p(y | θ(x i ; Φ)))

+ λR(Φ)

2nd-Order Risk Minimization
• Loss function (e.g., NLL)

L1 : Y × P(Y) → R

• Inner expectation minimization

min
Φ

N∑
i=1

L1
(
yi , Eθ∼p(θ | m(x i ;Φ))[p(y | θ)]

)
+ λR(Φ)
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Regularization

Objective: Enforce p(θ | m(x i ; Φ)) to look similar to a predefined distribution p(θ|m0) by
minimizing per-instance KL-divergence:

R(Φ) =
N∑

i=1
dKL(p(θ | m(x i ; Φ)), p(θ | m0))

• choose p(θ | m0) to parametrize uniform distribution (on 1st-order distributions)
• minimizing KL-divergence ↔ maximizing entropy
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Example: 1st vs 2nd Order Risk Minimization
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Do the resulting 2nd-order
distributions represent the
underlying epistemic uncertainty
of the 1st-order predictor?



What is a Faithful Representation of Epistemic Uncertainty?

Spread of the distribution should yield a valid estimate of EU:

(a) low uncertainty (b) high aleatoric uncertainty (c) high epistemic uncertainty

10



What is a Faithful Representation of Epistemic Uncertainty?

Spread of the distribution should yield a valid estimate of EU:

(a) low uncertainty (b) high aleatoric uncertainty (c) high epistemic uncertainty

Desirable convergence properties:9

1. Monotonicity: decreasing uncertainty with increasing sample size N
2. Convergence to Dirac delta distribution when N → ∞

9Bengs, Hüllermeier, and Waegeman, “Pitfalls of epistemic uncertainty quantification through loss minimisation”.
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What is a Faithful Representation of Epistemic Uncertainty?

How can we directly evaluate the faithfulness of the resulting 2nd-order
distribution?

Def. 3.1: Reference Distribution
Let θDN (x; ΦDN ) denote the minimizer of the 1st-order minimization problem for a training
set DN of size N, where DN ∼ PN . Define the reference 2nd-order distribution as

qN(θ | x) := P
(
θDN (x; ΦDN ) = θ

)
for x ∈ X .

=⇒ Can be approximated empirically by resampling and computing the empirical
distribution function.
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Reference Distribution: Example
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Theoretical Results



Theoretical Results: Unregularized Case (λ = 0)

Theorem 3.2 and Theorem 3.1. in our paper show that

• non-identifiability issues arise for inner loss minimisation, leading to a wide range of
possible values for the estimated uncertainty

• convergence to a Dirac Delta distribution in the case of outer loss minimisation
(generalization of Theorem 1 of Bengs et al10 to all exponential family members)

10Bengs, Hüllermeier, and Waegeman, “Pitfalls of epistemic uncertainty quantification through loss minimisation”.
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Theoretical Results: Regularized Case (λ > 0)

Theorem 3.3 shows that for inner and outer loss minimisation with entropy regularization

• there exists λ ≥ 0, x ∈ X for which the 2nd-order distribution differs from the reference
distribution.

Common ways in EDL to optimize the parameter λ are mainly based on heuristics,
defining an uncertainty budget that cannot be exceeded!
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Empirical Results



(Some) Experimental Results: Classification
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(Some) Experimental Results: Convergence Analysis
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(Some) Experimental Results: Distance Analysis
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Conclusion



Discussion

Summary

• DER does not result in distributions that are faithfully representing EU
• the regularization parameter λ yields an uncertainty budget that cannot be

exceeded for a given amount of training data points

Outlook:
• further analysis on different regularization

• different regularizers
• more advanced second-order loss functions

is needed

For other exp. results, proofs, and more theoretical analysis, check out
our paper.
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THANK YOU
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Conclusion

For other exp. results, proofs, and more theoretical analysis, check out our paper:

arXiv:2402.09056 [cs.AI]

(Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?)
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https://arxiv.org/abs/2402.09056
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Empirical Results: Regression (N = 100)

Fig. 4: Regression experiment with DN = {(xi , x3
i + ϵ)}N

i=1 for N ∈ {100, 500, 1000}, where xi ∈ U([−4, 4]),
ϵ ∼ N (0, σ2 = 9). The reference model learns the parameters θ = (µ, σ) of the underlying normal distribution, by optimizing
the negative log-likelihood.
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Empirical Results: Regression (N = 500)
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Empirical Results: Regression (N = 1000)
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