Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?

ICML 2024

Mira Jürgens¹, Nis Meinert², Viktor Bengs³, Eyke Hüllermeier³, Willem Waegeman¹

 $1¹$ Ghent University, $2²$ German Aerospace Center (DLR), $3¹$ LMU Munich

[What is Evidential Deep](#page-1-0) [Learning \(EDL\)?](#page-1-0)

Learn a **second-order distribution** directly by which both aleatoric and epistemic uncertainty can be disentangled predicted.

Dirichlet-Categorical Model

- level 1: $y \sim \mathcal{C}at(\theta)$ with $\theta \in \Delta_K$
- level 2: *θ* ∼ Dir(**m**) with **m** ∈ R K +

Dirichlet-Categorical Model

- level 1: $y \sim \mathcal{C}at(\theta)$ with $\theta \in \Delta_K$
- level 2: *θ* ∼ Dir(**m**) with **m** ∈ R K +

Fig. 1: Different levels of predictions^a (binary classification)

^aWimmer et al., ["Quantifying aleatoric and epistemic](#page-0-0) [uncertainty in machine learning: Are conditional entropy and](#page-0-0) [mutual information appropriate measures?"](#page-0-0)

Evidential Deep Learning for Regression

Normal-Inverse-Gamma Model

- level 1: y ∼ N (*µ, σ*²) with *µ* ∈ R, *σ* ² ∈ R⁺
- level 2: $(\mu, \sigma^2) \sim N$ -Γ⁻¹(*m*) with $m = (\gamma, \nu, \alpha, \beta) \in \mathbb{R} \times \mathbb{R}^3_+$

¹Amini et al., ["Deep evidential regression"](#page-0-0).

²Meinert, Gawlikowski, and Lavin, ["The unreasonable effectiveness of deep evidential regression"](#page-0-0). 4

Evidential Deep Learning for Regression

Normal-Inverse-Gamma Model

\n- level 1:
$$
y \sim \mathcal{N}(\mu, \sigma^2)
$$
 with $\mu \in \mathbb{R}$, $\sigma^2 \in \mathbb{R}_+$
\n

• level 2: $(\mu, \sigma^2) \sim N$ -Γ⁻¹(*m*) with $m = (\gamma, \nu, \alpha, \beta) \in \mathbb{R} \times \mathbb{R}^3_+$

Fig. 2: Results of Deep Evidential Regression¹ reproduced for two different runs²

¹Amini et al., ["Deep evidential regression"](#page-0-0).

²Meinert, Gawlikowski, and Lavin, ["The unreasonable effectiveness of deep evidential regression"](#page-0-0). 4

Choose your Distribution!

 θ (**x***,* ϕ) : $X \to \Theta$ (1st-order predictor), $m(x, \phi) : X \to M$ (2nd-order predictor)

³ Sensoy, Kaplan, and Kandemir, ["Evidential deep learning to quantify classification uncertainty"](#page-0-0).

⁴Amini et al., ["Deep evidential regression"](#page-0-0).

⁵Meinert and Lavin, ["Multivariate deep evidential regression"](#page-0-0).

While showing good results in downstream tasks, several critical analyses show theoretical flaws of EDL:

- Non-Convergence in the Classification case 6
- Non-Convergence in the Regression Case^7
- Non-Properness of its Loss functions⁸

−→ **Our approach:** Does the learned **second order distribution** represent the (epistemic) uncertainty of the 1st-order parameters in a faithful way?

⁶Bengs, Hüllermeier, and Waegeman, ["Pitfalls of epistemic uncertainty quantification through loss minimisation"](#page-0-0). ⁷Meinert, Gawlikowski, and Lavin, ["The unreasonable effectiveness of deep evidential regression"](#page-0-0).

⁸Bengs, Hüllermeier, and Waegeman, ["On second-order scoring rules for epistemic uncertainty quantification"](#page-0-0).

[Comparing 1st and 2nd-Order](#page-9-0) [Risk Minimization](#page-9-0)

1st-Order Risk Minimization

• Loss function (e.g., NLL)

 $L_1 : \mathcal{Y} \times \mathbb{P}(\mathcal{Y}) \to \mathbb{R}$

• **Risk minimization**

$$
\min_{\Phi} \sum_{i=1}^{N} L_1(y_i, p(y | \theta(\mathbf{x}_i; \Phi))) + \lambda R(\Phi)
$$

1st-Order Risk Minimization

• Loss function (e.g., NLL)

 $L_1 : \mathcal{Y} \times \mathbb{P}(\mathcal{Y}) \to \mathbb{R}$

• **Risk minimization**

2nd-Order Risk Minimization

• Loss function (e.g., NLL)

 $L_1 : \mathcal{Y} \times \mathbb{P}(\mathcal{Y}) \to \mathbb{R}$

• **Outer expectation minimization**

$$
\min_{\Phi} \sum_{i=1}^{N} L_1(y_i, p(y | \theta(\mathbf{x}_i; \Phi))) + \lambda R(\Phi)
$$

$$
\min_{\mathbf{\Phi}} \sum_{i=1}^{N} \mathbb{E}_{\boldsymbol{\theta} \sim p(\boldsymbol{\theta} \mid \boldsymbol{m}(\mathbf{x}_i;\mathbf{\Phi}))} [L_1(y_i, p(y \mid \boldsymbol{\theta}))] + \lambda R(\mathbf{\Phi})
$$

$$
R(\mathbf{\Phi}) = \sum_{i=1}^{N} d_{\mathrm{KL}}(p(\theta | \mathbf{m}(\mathbf{x}_i; \mathbf{\Phi})), p(\theta | \mathbf{m}_0))
$$

$$
R(\mathbf{\Phi}) = \sum_{i=1}^{N} d_{\mathrm{KL}}(p(\theta | \mathbf{m}(\mathbf{x}_i; \mathbf{\Phi})), p(\theta | \mathbf{m}_0))
$$

• choose $p(\theta | m_0)$ to parametrize uniform distribution (on 1st-order distributions)

$$
R(\mathbf{\Phi}) = \sum_{i=1}^{N} d_{\mathrm{KL}}(p(\theta | \mathbf{m}(\mathbf{x}_i; \mathbf{\Phi})), p(\theta | \mathbf{m}_0))
$$

- choose $p(\theta | m_0)$ to parametrize uniform distribution (on 1st-order distributions)
- minimizing **KL-divergence** ↔ maximizing **entropy**

$$
R(\mathbf{\Phi}) = \sum_{i=1}^{N} d_{\mathrm{KL}}(p(\theta | \mathbf{m}(\mathbf{x}_i; \mathbf{\Phi})), p(\theta | \mathbf{m}_0))
$$

- choose $p(\theta | m_0)$ to parametrize uniform distribution (on 1st-order distributions)
- minimizing **KL-divergence** ↔ maximizing **entropy**

Example: 1st vs 2nd Order Risk Minimization

[Do the resulting 2nd-order](#page-17-0) [distributions represent the](#page-17-0) [underlying epistemic uncertainty](#page-17-0) [of the 1st-order predictor?](#page-17-0)

What is a Faithful Representation of Epistemic Uncertainty?

Spread of the distribution should yield a valid estimate of EU:

What is a Faithful Representation of Epistemic Uncertainty?

Spread of the distribution should yield a valid estimate of EU:

Desirable **convergence properties**: 9

- 1. Monotonicity: decreasing uncertainty with increasing sample size N
- 2. Convergence to Dirac delta distribution when $N \to \infty$

⁹Bengs, Hüllermeier, and Waegeman, ["Pitfalls of epistemic uncertainty quantification through loss minimisation"](#page-0-0).

How can we directly evaluate the faithfulness of the resulting 2nd-order distribution?

How can we directly evaluate the faithfulness of the resulting 2nd-order distribution?

Def. 3.1: Reference Distribution

Let $\theta_{\mathcal{D}_N}(\pmb{x}; \pmb{\Phi}_{\mathcal{D}_N})$ denote the minimizer of the 1st-order minimization problem for a training set \mathcal{D}_N of size N , where $\mathcal{D}_N \sim P^N.$ Define the *reference 2nd-order distribution* as

$$
q_N(\theta | \mathbf{x}) := \mathbb{P}(\theta_{\mathcal{D}_N}(\mathbf{x}; \Phi_{\mathcal{D}_N}) = \theta) \quad \text{for } \mathbf{x} \in \mathcal{X}.
$$

How can we directly evaluate the faithfulness of the resulting 2nd-order distribution?

Def. 3.1: Reference Distribution

Let $\theta_{\mathcal{D}_N}(\pmb{x}; \pmb{\Phi}_{\mathcal{D}_N})$ denote the minimizer of the 1st-order minimization problem for a training set \mathcal{D}_N of size N , where $\mathcal{D}_N \sim P^N.$ Define the *reference 2nd-order distribution* as

$$
q_N(\theta | \mathbf{x}) := \mathbb{P}(\theta_{\mathcal{D}_N}(\mathbf{x}; \Phi_{\mathcal{D}_N}) = \theta) \quad \text{for } \mathbf{x} \in \mathcal{X}.
$$

 \implies **Can be approximated empirically** by resampling and computing the empirical distribution function.

Reference Distribution: Example

[Theoretical Results](#page-24-0)

Theorem 3.2 and Theorem 3.1. in our paper show that

- **non-identifiability** issues arise for inner loss minimisation, leading to a wide range of possible values for the estimated uncertainty
- **convergence to a Dirac Delta distribution** in the case of outer loss minimisation (generalization of Theorem 1 of Bengs et al¹⁰ to all exponential family members)

 10 Bengs, Hüllermeier, and Waegeman, ["Pitfalls of epistemic uncertainty quantification through loss minimisation"](#page-0-0).

Theorem 3.3 shows that for inner and outer loss minimisation with entropy regularization

• there exists $\lambda \geq 0$, $x \in \mathcal{X}$ for which the 2nd-order distribution differs from the reference distribution.

Theorem 3.3 shows that for inner and outer loss minimisation with entropy regularization

• there exists $\lambda > 0$, $x \in \mathcal{X}$ for which the 2nd-order distribution differs from the reference distribution.

Common ways in EDL to optimize the parameter *λ* **are mainly based on heuristics, defining an uncertainty budget that cannot be exceeded!**

[Empirical Results](#page-28-0)

(Some) Experimental Results: Classification

(Some) Experimental Results: Convergence Analysis

(Some) Experimental Results: Distance Analysis

[Conclusion](#page-32-0)

Discussion

Summary

- DER does not result in distributions that are faithfully representing EU
- **•** the regularization parameter λ yields an *uncertainty budget* that cannot be exceeded for a given amount of training data points

Outlook:

- further analysis on different regularization
	- different regularizers
	- more advanced second-order loss functions
	- is needed

For other exp. results, proofs, and more theoretical analysis, check out our paper.

THANK YOU

For other exp. results, proofs, and more theoretical analysis, check out our paper:

[arXiv:2402.09056 \[cs.AI\]](https://arxiv.org/abs/2402.09056)

(Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?)

Empirical Results: Regression (N = 100**)**

Fig. 4: Regression experiment with $\mathcal{D}_N = \{(x_i, x_i^3 + \epsilon)\}_{i=1}^N$ for $N \in \{100, 500, 1000\}$, where $x_i \in U([-4, 4])$, *ϵ* ∼ N(0*, σ* ² = 9). The reference model learns the parameters *θ* = (*µ, σ*) of the underlying normal distribution, by optimizing the negative log-likelihood.

Empirical Results: Regression (N = 500**)**

Empirical Results: Regression (N = 1000**)**

