Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?

ICML 2024

Mira Jürgens¹, Nis Meinert², Viktor Bengs³, Eyke Hüllermeier³, Willem Waegeman¹

¹Ghent University, ²German Aerospace Center (DLR), ³LMU Munich

What is Evidential Deep Learning (EDL)?

Learn a **second-order distribution** directly by which both *aleatoric* and *epistemic* uncertainty can be disentangled predicted.

Dirichlet-Categorical Model

- level 1: $y \sim Cat(\theta)$ with $\theta \in \Delta_K$
- level 2: $\boldsymbol{\theta} \sim \textit{Dir}(\boldsymbol{m})$ with $\boldsymbol{m} \in \mathbb{R}_+^K$

Dirichlet-Categorical Model

- level 1: $y \sim Cat(\theta)$ with $\theta \in \Delta_K$
- level 2: $\boldsymbol{\theta} \sim \textit{Dir}(\boldsymbol{m})$ with $\boldsymbol{m} \in \mathbb{R}_+^K$

Fig. 1: Different levels of predictions^a (binary classification)

^aWimmer et al., "Quantifying aleatoric and epistemic uncertainty in machine learning: Are conditional entropy and mutual information appropriate measures?"

Evidential Deep Learning for Regression

Normal-Inverse-Gamma Model

- level 1: $y \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$, $\sigma^2 \in \mathbb{R}_+$
- level 2: $(\mu, \sigma^2) \sim N$ - $\Gamma^{-1}(\boldsymbol{m})$ with $\boldsymbol{m} = (\gamma, \nu, \alpha, \beta) \in \mathbb{R} \times \mathbb{R}^3_+$

¹Amini et al., "Deep evidential regression".

²Meinert, Gawlikowski, and Lavin, "The unreasonable effectiveness of deep evidential regression".

Evidential Deep Learning for Regression

Normal-Inverse-Gamma Model

• level 1:
$$y \sim \mathcal{N}(\mu, \sigma^2)$$
 with $\mu \in \mathbb{R}$, $\sigma^2 \in \mathbb{R}_+$

• level 2: $(\mu, \sigma^2) \sim N$ - $\Gamma^{-1}(\boldsymbol{m})$ with $\boldsymbol{m} = (\gamma, \nu, \alpha, \beta) \in \mathbb{R} \times \mathbb{R}^3_+$

Fig. 2: Results of Deep Evidential Regression¹ reproduced for two different runs²

¹Amini et al., "Deep evidential regression".

²Meinert, Gawlikowski, and Lavin, "The unreasonable effectiveness of deep evidential regression".

Choose your Distribution!

Problem	Likelihood	Conjugate prior
classification ³	$y \sim {\it Cat}(heta)$	$ heta \sim Dir(m)$
	$\boldsymbol{\theta} \in \Delta_{\mathcal{K}}$	$oldsymbol{m} \in \mathbb{R}_+^K$
regression (univariate) ⁴	y $\sim \mathcal{N}(\mu,\sigma^2)$	$m{ heta} \sim N ext{-}\Gamma^{-1}(m{m})$
	$\mu \in \mathbb{R}$, $\sigma^2 \in \mathbb{R}_+$	$oldsymbol{m} = (\gamma, u, lpha, eta) \in \mathbb{R} imes \mathbb{R}^3_+$
regression (multivariate) 5	$oldsymbol{y} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$	$m{ heta} \sim {\sf NIW}(m{m})$
	$oldsymbol{\mu} \in \mathbb{R}^{D}$, $oldsymbol{\Sigma} \in \mathbb{R}^{D imes D}$	$oldsymbol{m}=(oldsymbol{\mu}_0,\kappa, u,oldsymbol{\Phi})$
point processes	y $\sim Pois(m{ heta})$	$m{ heta} \sim \Gamma(m{m})$
	$\boldsymbol{\theta} \in \mathbb{R}_+$	$oldsymbol{m}=(lpha,eta)\in\mathbb{R}^2_+$

 $heta(\mathbf{x},\phi):\mathcal{X}
ightarrow \mathbf{\Theta}$ (1st-order predictor), $\mathbf{m}(\mathbf{x},\phi):\mathcal{X}
ightarrow \mathcal{M}$ (2nd-order predictor)

 $^{^3\}mathsf{Sensoy},$ Kaplan, and Kandemir, "Evidential deep learning to quantify classification uncertainty".

⁴Amini et al., "Deep evidential regression".

⁵Meinert and Lavin, "Multivariate deep evidential regression".

While showing good results in downstream tasks, several critical analyses show theoretical flaws of EDL:

- Non-Convergence in the Classification case⁶
- Non-Convergence in the Regression Case⁷
- Non-Properness of its Loss functions⁸

 \rightarrow Our approach: Does the learned second order distribution represent the (epistemic) uncertainty of the 1st-order parameters in a faithful way?

⁶Bengs, Hüllermeier, and Waegeman, "Pitfalls of epistemic uncertainty quantification through loss minimisation". ⁷Meinert, Gawlikowski, and Lavin, "The unreasonable effectiveness of deep evidential regression".

⁸Bengs, Hüllermeier, and Waegeman, "On second-order scoring rules for epistemic uncertainty quantification".

Comparing 1st and 2nd-Order Risk Minimization

1st-Order Risk Minimization

Loss function (e.g., NLL)

 $L_1:\mathcal{Y} imes\mathbb{P}(\mathcal{Y}) o\mathbb{R}$

Risk minimization

$$\min_{\mathbf{\Phi}} \sum_{i=1}^{N} L_1(y_i, p(y | \boldsymbol{\theta}(\mathbf{x}_i; \mathbf{\Phi}))) + \lambda R(\mathbf{\Phi})$$

1st-Order Risk Minimization

• Loss function (e.g., NLL)

 $L_1:\mathcal{Y} imes\mathbb{P}(\mathcal{Y}) o\mathbb{R}$

Risk minimization

$$\min_{\mathbf{\Phi}} \sum_{i=1}^{N} L_1(y_i, p(y \mid \boldsymbol{\theta}(\mathbf{x}_i; \mathbf{\Phi}))) + \lambda R(\mathbf{\Phi})$$

2nd-Order Risk Minimization

- Loss function (e.g., NLL)
 - $L_1:\mathcal{Y} imes\mathbb{P}(\mathcal{Y}) o\mathbb{R}$
- Outer expectation minimization

$$\min_{\mathbf{\Phi}} \sum_{i=1}^{N} \mathbb{E}_{\boldsymbol{\theta} \sim p(\boldsymbol{\theta} \mid \boldsymbol{m}(\boldsymbol{x}_{i}; \boldsymbol{\Phi}))} [L_{1}(y_{i}, p(y \mid \boldsymbol{\theta}))] + \lambda R(\boldsymbol{\Phi})$$

$$R(\mathbf{\Phi}) = \sum_{i=1}^{N} \mathrm{d}_{\mathrm{KL}}(p(\boldsymbol{\theta} \mid \boldsymbol{m}(\boldsymbol{x}_i; \boldsymbol{\Phi})), \ p(\boldsymbol{\theta} \mid \boldsymbol{m}_0))$$

$$R(\mathbf{\Phi}) = \sum_{i=1}^{N} \mathrm{d}_{\mathrm{KL}}(p(\mathbf{\theta} \mid \mathbf{m}(\mathbf{x}_i; \mathbf{\Phi})), \, p(\mathbf{\theta} \mid \mathbf{m}_0))$$

• choose $p(\theta \mid m_0)$ to parametrize uniform distribution (on 1st-order distributions)

$$R(\mathbf{\Phi}) = \sum_{i=1}^{N} \mathrm{d}_{\mathrm{KL}}(p(\mathbf{\theta} \mid \mathbf{m}(\mathbf{x}_i; \mathbf{\Phi})), \, p(\mathbf{\theta} \mid \mathbf{m}_0))$$

- choose $p(\theta \mid m_0)$ to parametrize uniform distribution (on 1st-order distributions)
- minimizing **KL-divergence** \leftrightarrow maximizing **entropy**

$$R(\mathbf{\Phi}) = \sum_{i=1}^{N} \mathrm{d}_{\mathrm{KL}}(p(\mathbf{\theta} \mid \mathbf{m}(\mathbf{x}_i; \mathbf{\Phi})), \, p(\mathbf{\theta} \mid \mathbf{m}_0))$$

- choose $p(\theta \mid m_0)$ to parametrize uniform distribution (on 1st-order distributions)
- minimizing **KL-divergence** \leftrightarrow maximizing **entropy**

Example: 1st vs 2nd Order Risk Minimization

Do the resulting 2nd-order distributions represent the underlying epistemic uncertainty of the 1st-order predictor?

What is a Faithful Representation of Epistemic Uncertainty?

Spread of the distribution should yield a valid estimate of EU:

(a) low uncertainty

(b) high aleatoric uncertainty (c) high epistemic uncertainty

What is a Faithful Representation of Epistemic Uncertainty?

Spread of the distribution should yield a valid estimate of EU:

Desirable convergence properties:9

- 1. Monotonicity: decreasing uncertainty with increasing sample size N
- 2. Convergence to Dirac delta distribution when $N
 ightarrow \infty$

⁹Bengs, Hüllermeier, and Waegeman, "Pitfalls of epistemic uncertainty quantification through loss minimisation".

How can we directly evaluate the faithfulness of the resulting 2nd-order distribution?

How can we directly evaluate the faithfulness of the resulting 2nd-order distribution?

Def. 3.1: Reference Distribution

Let $\theta_{\mathcal{D}_N}(\mathbf{x}; \mathbf{\Phi}_{\mathcal{D}_N})$ denote the minimizer of the 1st-order minimization problem for a training set \mathcal{D}_N of size N, where $\mathcal{D}_N \sim P^N$. Define the *reference 2nd-order distribution* as

$$q_N(\theta \mid \mathbf{x}) := \mathbb{P} ig(heta_{\mathcal{D}_N}(\mathbf{x}; \mathbf{\Phi}_{\mathcal{D}_N}) = m{ heta} ig) \quad ext{for } \mathbf{x} \in \mathcal{X}.$$

How can we directly evaluate the faithfulness of the resulting 2nd-order distribution?

Def. 3.1: Reference Distribution

Let $\theta_{\mathcal{D}_N}(\mathbf{x}; \mathbf{\Phi}_{\mathcal{D}_N})$ denote the minimizer of the 1st-order minimization problem for a training set \mathcal{D}_N of size N, where $\mathcal{D}_N \sim P^N$. Define the *reference 2nd-order distribution* as

$$q_N(\boldsymbol{\theta} \mid \boldsymbol{x}) := \mathbb{P} ig(\boldsymbol{\theta}_{\mathcal{D}_N}(\boldsymbol{x}; \boldsymbol{\Phi}_{\mathcal{D}_N}) = \boldsymbol{\theta} ig) \quad \text{for } \boldsymbol{x} \in \mathcal{X}.$$

 \implies Can be approximated empirically by resampling and computing the empirical distribution function.

Reference Distribution: Example

Theoretical Results

Theorem 3.2 and Theorem 3.1. in our paper show that

- non-identifiability issues arise for inner loss minimisation, leading to a wide range of
 possible values for the estimated uncertainty
- convergence to a Dirac Delta distribution in the case of outer loss minimisation (generalization of Theorem 1 of Bengs et al¹⁰ to all exponential family members)

¹⁰Bengs, Hüllermeier, and Waegeman, "Pitfalls of epistemic uncertainty quantification through loss minimisation".

Theorem 3.3 shows that for inner and outer loss minimisation with entropy regularization

there exists λ ≥ 0, x ∈ X for which the 2nd-order distribution differs from the reference distribution.

Theorem 3.3 shows that for inner and outer loss minimisation with entropy regularization

there exists λ ≥ 0, x ∈ X for which the 2nd-order distribution differs from the reference distribution.

Common ways in EDL to optimize the parameter λ are mainly based on heuristics, defining an *uncertainty budget* that cannot be exceeded!

Empirical Results

(Some) Experimental Results: Classification

(Some) Experimental Results: Convergence Analysis

(Some) Experimental Results: Distance Analysis

17

Conclusion

Discussion

Summary

- DER does not result in distributions that are faithfully representing EU
- the regularization parameter λ yields an *uncertainty budget* that cannot be exceeded for a given amount of training data points

Outlook:

- further analysis on different regularization
 - different regularizers
 - more advanced second-order loss functions
 - is needed

For other exp. results, proofs, and more theoretical analysis, check out our paper.

THANK YOU

For other exp. results, proofs, and more theoretical analysis, check out our paper:

arXiv:2402.09056 [cs.AI]

(Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?)

Empirical Results: Regression (N = 100)

Fig. 4: Regression experiment with $\mathcal{D}_N = \{(x_i, x_i^3 + \epsilon)\}_{i=1}^N$ for $N \in \{100, 500, 1000\}$, where $x_i \in U([-4, 4])$, $\epsilon \sim \mathcal{N}(0, \sigma^2 = 9)$. The reference model learns the parameters $\theta = (\mu, \sigma)$ of the underlying normal distribution, by optimizing the negative log-likelihood.

Empirical Results: Regression (N = 500)

Empirical Results: Regression (N = 1000)

