

# Parameterized Physics-informed Neural Networks for Parameterized PDEs

Woojin Cho<sup>1 2</sup>, Minju Jo<sup>3</sup>, Haksoo Lim<sup>1</sup>, Kookjin Lee<sup>2</sup>, Dongeun Lee<sup>4</sup>, Sanghyun Hong<sup>5</sup>, Noseong Park<sup>6</sup> <sup>1</sup>Yonsei University, <sup>2</sup>Arizona State University, <sup>3</sup>LG CNS, <sup>4</sup>Texas A&M University-Commerce, <sup>5</sup>Oregon State University, <sup>6</sup>KAIST









# **Preliminaries: Parameterized PDEs**

PDE parameter:  $\rho$ 



**Parameterized PDEs** are a type of partial differential equation that include specific parameters within the equation. These PDE parameters can reflect the physical properties of the system.

(d) Reac. ( $\rho = 1$ ) (e) Reac. ( $\rho = 4$ ) (f) Reac. ( $\rho = 7$ )

### **Preliminaries: Physics-informed Neural Networks**

Solving PDE with coordinate-based MLP (PINN)

$$(\mathbf{x}, t) \longrightarrow |$$
 Neural Network:  $\theta \longrightarrow \tilde{u}$ 

#### How to train?

• 
$$L \stackrel{\text{def}}{=} \alpha L_u + \beta L_f$$
 (Total loss)  
•  $L_f = \frac{1}{N_f} \sum_{i=1}^{N_f} |F(x_f^i, t_f^i, \tilde{u}; \theta)|^2$  (PDE residual loss)  
•  $L_u = \frac{1}{N_u} \sum_{i=1}^{N_u} |u(x_u^i, t_u^i) - \tilde{u}(x_u^i, t_u^i; \theta)|^2$  (Boundary loss)

F: PDE operator  $(x_f, t_f)$ : collocation points  $(x_u, t_u)$ : initial & boundary points  $N_f$ : # collocation points  $N_u$ : # initial & boundary points

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equation, Journal of Computational Physics 2019

# **Physics informed Neural Network**



#### Weaknesses of PINNs

W1. PINNs rely on the PDE loss, and this loss function is a non-convex function.

W2. A single PINN can learn only one governing equation.

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equation, Journal of Computational Physics 2019

### **Motivations**



1. A latent space of parameterized PDEs may exist.

2. It will be more effective to solve similar problems simultaneously.

#### Contributions

We show that the proposed method addresses the failure modes of PINNs.
 We present a new efficient PINN framework for multi-query scenarios.
 We develop a SVD modulation for solving multiple PDEs.

#### **Proposed Method**

**Overall architecture of P<sup>2</sup>INN** 



$$u_{\theta}(x,t;\boldsymbol{\mu}) = g_{\theta_g}\left(\left[g_{\theta_c}(x,t);g_{\theta_p}(\boldsymbol{\mu})\right]\right),$$
$$\boldsymbol{h}_{param} = \sigma(FC_{D_p}\cdots(\sigma(FC_2(\sigma(FC_1(\boldsymbol{\mu}))))))$$
$$\boldsymbol{h}_{coord} = \sigma(FC_{D_c}\cdots(\sigma(FC_2(\sigma(FC_1(x,t))))))$$

$$h_{param} = g_{\theta_p}(\mu) \text{ and } h_{coord} = g_{\theta_c}(x, t)$$

The manifold network  $g_{\theta_g}$  reads the two hidden re presentations,  $h_{param}$  and  $h_{coord}$ , and infer the inp ut equation's solution at (x, t).

### **Proposed Method**



#### Singular Value Decomposition (SVD) Modulation

From the pre-trained decoder layer of P<sup>2</sup>INN, we obtain the bases  $\psi_l$ ,  $\phi_l$  for parameterized PDEs through SVD. During fine-tuning, we set  $\{\alpha_l\}_{l=2}^{D_g-1}$  to be learnable, while keeping all other parameters in the network fixed. It is an option to fix the parameters of  $FC_1$  and  $FC_{D_g}$ 

### **Experimental Results**

Addressing W1: PINNs rely on the PDE loss, and this loss function is a non-convex function.

#### <1D CDR equations>

#### The relative and absolute *L*<sub>2</sub>errors

|         | PDE type      | Metric    | PINN   | LargePINN | PINN-P | P2INN  |
|---------|---------------|-----------|--------|-----------|--------|--------|
| Class 1 | Convection    | Abs. err. | 0.1140 | 0.1191    | 0.0209 | 0.0198 |
|         |               | Rel. err. | 0.1978 | 0.2084    | 0.0410 | 0.0464 |
|         | Diffusion     | Abs. err. | 0.6782 | 0.5868    | 0.3800 | 0.1916 |
|         |               | Rel. err. | 1.2825 | 1.0994    | 0.7912 | 0.3745 |
|         | Reaction      | Abs. err. | 0.7902 | 0.7910    | 0.8975 | 0.0042 |
|         |               | Rel. err. | 0.8460 | 0.8469    | 0.9908 | 0.0092 |
| Class 2 | ConvDiff.     | Abs. err. | 0.2735 | 0.1626    | 0.1253 | 0.0622 |
|         |               | Rel. err. | 0.5106 | 0.3189    | 0.3009 | 0.1495 |
|         | ReacDiff.     | Abs. err. | 0.7167 | 0.7399    | 0.1756 | 0.0898 |
|         |               | Rel. err. | 0.7998 | 0.8186    | 0.2632 | 0.1411 |
| Class 3 | ConvDiffReac. | Abs. err. | 0.7450 | 0.7415    | 0.8590 | 0.0353 |
|         |               | Rel. err. | 0.7960 | 0.7915    | 0.9532 | 0.0812 |



## **Experimental Results**

Addressing W2: A single PINN can learn only one governing equation



### Conclusion

• We design a novel neural network architecture for solving parameterized PDEs, P2INNs, which significantly improves the performance of PINNs overcoming the well-known weaknesses.

• We demonstrate that P2INNs can learn all benchmark PDEs in a single training run and significantly outperform existing PINN methods in prediction accuracy.

Presenter : Woojin Cho Email: <u>snowmoon@yonsei.ac.kr</u>

**Poster Presentation Schedule: Thu, July 25, 11:30 am - 1:00 pm** 

#### Reference

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equation, Journal of Computational Physics 2019

Characterizing possible failure modes in physics-informed neural networks, NeurIPS 2021

