

Parameterized Physics-informed Neural Networks for Parameterized PDEs

Woojin Cho¹², Minju Jo³, Haksoo Lim¹, Kookjin Lee², Dongeun Lee⁴, Sanghyun Hong⁵, Noseong Park⁶ ¹Yonsei University, ²Arizona State University, ³LG CNS, ⁴Texas A&M University-Commerce, ⁵Oregon State University, ⁶KAIST

1

Preliminaries: Parameterized PDEs

Parameterized PDEs are a type of partial differential equation that include specific parameters within the equation. These PDE parameters can reflect the physical properties of the system.

Preliminaries: Physics-informed Neural Networks

Solving PDE with coordinate-based MLP **(PINN)**

$$
(x, t) \longrightarrow
$$
 Neural Network: θ $\longrightarrow \tilde{u}$

How to train?

•
$$
L \stackrel{\text{def}}{=} \alpha L_u + \beta L_f
$$
 (Total loss)
\n• $L_f = \frac{1}{N_f} \sum_{i=1}^{N_f} \left| F(x_f^i, t_f^i, \tilde{u}; \theta) \right|^2$ (PDE residual loss)
\n• $L_u = \frac{1}{N_u} \sum_{i=1}^{N_u} \left| u(x_u^i, t_u^i) - \tilde{u}(x_u^i, t_u^i; \theta) \right|^2$ (Boundary loss)

 (x_f, t_f) : collocation points (x_u, t_u) : initial & boundary points N_f : # collocation points N_u : # initial & boundary points : PDE operator

Physics informed Neural Network

Weaknesses of PINNs

W₁. PINNs rely on the PDE loss, and this loss function is a non-convex function.

W2. A single PINN can learn only one governing equation.

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equation, **Journal of Computational Physics 2019**

Motivations

simultaneously. 1. ^A latent space of parameterized PDEs may exist.

2. It will be more effective to solve similar problems

Contributions

1) We show that the proposed method **addresses the failure modes** of PINNs. 2) We present a new efficient PINN framework for **multi-query** scenarios. 3) We develop a **SVD modulation** for solving multiple PDEs.

Proposed Method

Overall architecture of

$$
u_{\theta}(x, t; \mu) = g_{\theta_{g}}\left(\left[g_{\theta_{c}}(x, t); g_{\theta_{p}}(\mu)\right]\right),
$$

$$
\boldsymbol{h}_{param} = \sigma(FC_{D_{p}} \cdots (\sigma(FC_{2}(\sigma(FC_{1}(\mu))))))
$$

$$
\boldsymbol{h}_{coord} = \sigma(FC_{D_{c}} \cdots (\sigma(FC_{2}(\sigma(FC_{1}(x, t))))))
$$

$$
x, t); g_{\theta_p}(\mu)\Big| \Big), \qquad \qquad \mathbf{h}_{param} = g_{\theta_p}(\mu) \text{ and } \mathbf{h}_{coord} = g_{\theta_c}(x, t)
$$

 $= \sigma(F C_{D_p} \cdots (\sigma(F C_2(\sigma(F C_1(\mu))))))$ The manifold network g_{θ_g} reads the two hidden re presentations, h_{param} and h_{coord} , and infer the inp ut equation's solution at (x, t) .

Proposed Method

Singular Value Decomposition (SVD) Modulation

From the pre-trained decoder layer of P²INN, we obtain the bases ψ_1 , ϕ_1 for parameterized PDEs through SVD. During fine-tuning, we set $\{\alpha_l\}_{l=2}^{D_g-1}$ to be learnable, while keeping all other paramet ers in the network fixed. It is an option to fix the parameters of FC_1 and FC_{D_q}

Experimental Results

Addressing W1: PINNs rely on the PDE loss, and this loss function is a non-convex function.

<1D CDR equations>

The relative and absolute L_2 errors

Experimental Results

Addressing W2: A single PINN can learn only one governing equation

Real-time multi-query scenarios Fine-tuning phase (unseen PDE parameter) $\left| \begin{smallmatrix} 1.0 \\ 0.8 \\ 0.8 \end{smallmatrix} \right|$ error 2.6×10^{-1} all svd 2.4×10^{-1} shift pretrained 2.2×10^{-1} $\frac{1}{6}$ 0.6
 $\frac{1}{6}$ 0.4
 $\frac{1}{6}$ 0.2 PINN (seen) absolute 2×10^{-1} $P²$ INN (unseen) $P²$ INN (seen) 1.8×10^{-1} \times 1.6×10^{-1} $\mathfrak{a}_{0.0}$ \overline{L} 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0 25 50 75 $\overline{0}$ 100 ρ Epoch **<Reaction equation> <Convection equation (β=8)>**

Pretrained model is trained using convection equations with $\beta = 1 \sim 5$

Conclusion

• We design a novel neural network architecture for solving parameterized PDEs, P2INNs, which significantly improves the performance of PINNs overcoming the well-known weaknesses.

• We demonstrate that P2INNs can learn all benchmark PDEs in a single training run and significantly outperform existing PINN methods in prediction accuracy.

Presenter : Woojin Cho Email: snowmoon@yonsei.ac.kr

Poster Presentation Schedule: Thu, July 25, 11:30 am -

Reference

Physics-informed neural networks: A deep learning framework for solving f nonlinear partial differential equation, **Journal of Computational Physics 2019**

Characterizing possible failure modes in physics-informed neural networks, Neurl