

Verifying message-passing neural networks via topology-based bounds tightening

Christopher Hojny^{*,1}, Shiqiang Zhang^{*,2}, Juan S. Campos², Ruth Misener²

* These authors contributed equally.

¹ Eindhoven University of Technology, Eindhoven, The Netherlands

² Imperial College London, London, UK

Funding: EPSRC EP/W003317/1 & EP/T001577/1

Adversarial attack v.s. Certifiable robustness

Machine learning models are vulnerable: small input changes could lead to wrong predictions.

Denote f as a model, assume $\mathcal{P}(X^*)$ is the admissible perturbations on input X^* .

Adversarial attack

$$\exists X \in \mathcal{P}(X^*), \text{ s.t., } f(X) \neq f(X^*)$$

Certifiable robustness

$$f(X) = f(X^*), \forall X \in \mathcal{P}(X^*)$$

Besides input features, the graph structure involved in graph neural networks (GNNs) provides more options to attack (, while makes it harder to be verified (certified robustness).

Problem definition

Given a trained GNN f for graph/node classification task, where the predicted label corresponds to the maximal logit. Given an input (X^*, A^*) consisting of features X^* and adjacency matrix A^* , denote its predictive label as c^* . The worst case margin between predictive label c^* and attack label c under perturbations $\mathcal{P}(\cdot)$ is:

$$\begin{aligned} m(c^*, c) := \min_{(X, A)} f_{c^*}(X, A) - f_c(X, A) \\ \text{s.t. } X \in \mathcal{P}(X^*), A \in \mathcal{P}(A^*). \end{aligned} \tag{1}$$

A positive $m(c^*, c)$ means that the logit of class c^* is always larger than class c .

Let \mathcal{C} be the set of all classes. If $m(c^*, c) > 0, \forall c \in \mathcal{C} \setminus \{c^*\}$, then any admissible perturbation can not change the predictive label, i.e., this GNN is robust at (X^*, A^*) .

Admissible perturbations

Perturbations on features, i.e., $\mathcal{P}(X^*)$, are usually defined as a l_p norm ball around X^* . The choice of norm is quite flexible for attack since one feasible attack is sufficient. For verification, l_∞ norm is most commonly used since it defines bounds for each feature separately.

Remark: If only feature perturbations are allowed, then verifying a GNN is equivalent to verifying a NN since the connections between layers are fixed.

New challenges for GNN verification:

- Perturbations on graph structure, e.g., add edges/remove edges/inject nodes, directly change the connections between layers.
- Perturbations on one node indirectly attack other nodes via message passing or graph convolution.

Verification of message passing neural networks (MPNNs)

Motivation: classic and general GNN framework, but few certificates.

Tool: a recently developed mixed-integer programming (MIP) formulation for MPNNs.

Definition: consider a MPNN with l -th layer defined as:

$$x_v^{(l)} = \text{ReLU} \left(\sum_{u \in V} A_{u,v} w_{u \rightarrow v}^{(l)} x_u^{(l-1)} + b_v^{(l)} \right), \quad \forall v \in V \quad (2)$$

where $V = \{0, 1, \dots, N-1\}$ is the node set, N is the number of nodes, $A_{u,v} \in \{0, 1\}$ denotes the existence of edge $u \rightarrow v$.

Perturbations:

- Graph classification: remove/add edges with global/local budgets.
- Node classification: remove edges with global/local budgets.

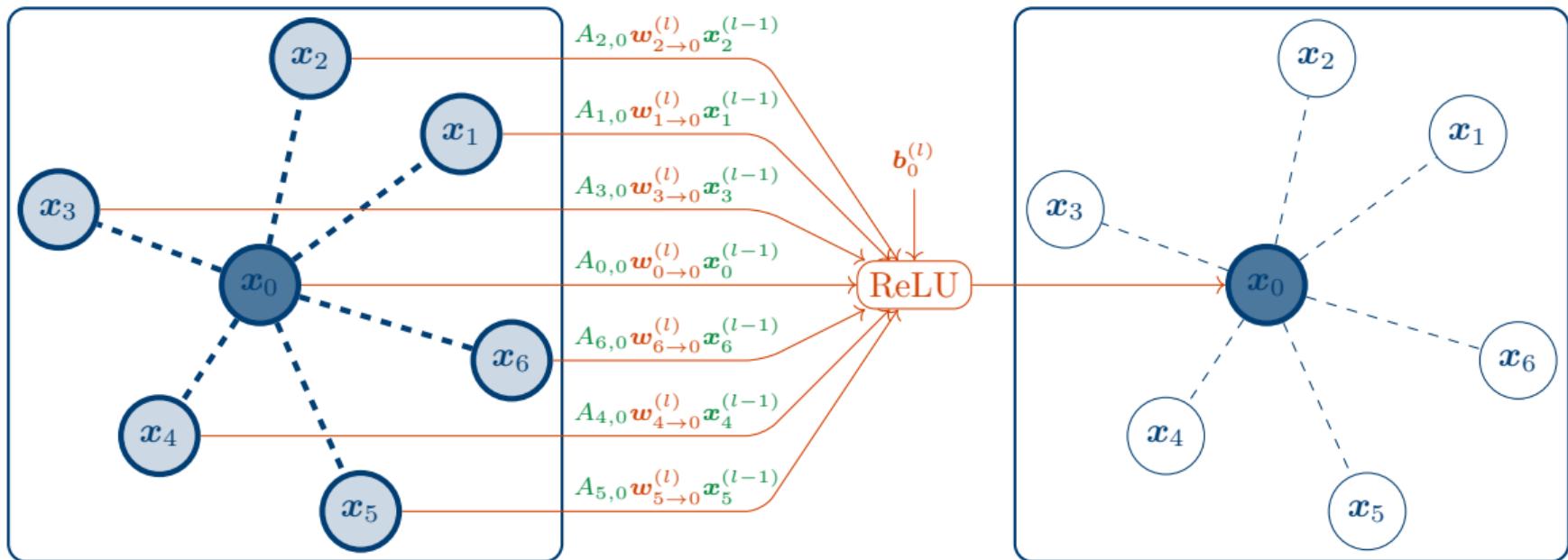
Message passing with fixed graph structure

Message passing with unknown graph structure

$(l - 1)^{th}$ layer

$$\mathbf{x}_v^{(l)} = \text{ReLU} \left(\sum_{u \in V} A_{u,v} \mathbf{w}_{u \rightarrow v}^{(l)} \mathbf{x}_u^{(l-1)} + \mathbf{b}_v^{(l)} \right)$$

l^{th} layer



MIP encoding of MPNNs

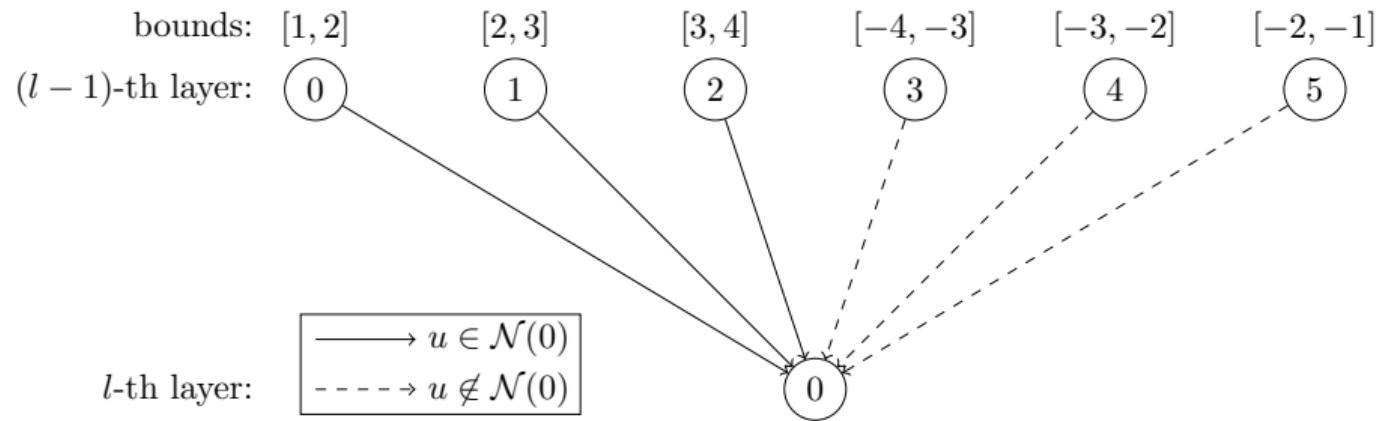
$$x_v^{(l)} = \max\{ \underbrace{\bar{x}_v^{(l)}}, \mathbf{0} \} \leftarrow \begin{cases} x_{v,f}^{(l)} \geq 0 \\ x_{v,f}^{(l)} \geq \bar{x}_{v,f}^{(l)} \\ x_{v,f}^{(l)} \leq \bar{x}_{v,f}^{(l)} - lb(\bar{x}_{v,f}^{(l)}) \cdot (1 - \sigma_{v,f}^{(l)}) \\ x_{v,f}^{(l)} \leq ub(\bar{x}_{v,f}^{(l)}) \cdot \sigma_{v,f}^{(l)} \end{cases}$$

$$\bar{x}_v^{(l)} = \sum_{u \in V} w_{u \rightarrow v}^{(l)} x_{u \rightarrow v}^{(l-1)} + b_v^{(l)}$$

$$\underbrace{x_{u \rightarrow v}^{(l-1)}}_{\uparrow} = A_{u,v} x_u^{(l-1)} \Leftrightarrow \begin{cases} x_{u \rightarrow v, f}^{(l-1)} \geq lb(x_{u,f}^{(l-1)}) \cdot A_{u,v} \\ x_{u \rightarrow v, f}^{(l-1)} \leq ub(x_{u,f}^{(l-1)}) \cdot A_{u,v} \\ x_{u \rightarrow v, f}^{(l-1)} \leq x_{u,f}^{(l-1)} - lb(x_{u,f}^{(l-1)}) \cdot (1 - A_{u,v}) \\ x_{u \rightarrow v, f}^{(l-1)} \geq x_{u,f}^{(l-1)} - ub(x_{u,f}^{(l-1)}) \cdot (1 - A_{u,v}) \end{cases}$$

Basic bounds tightening (*basic*)

Assume that there are $N = 6$ nodes with only one input and output feature. For simplicity, assume all weights equal to 1 and all biases equal to 0.

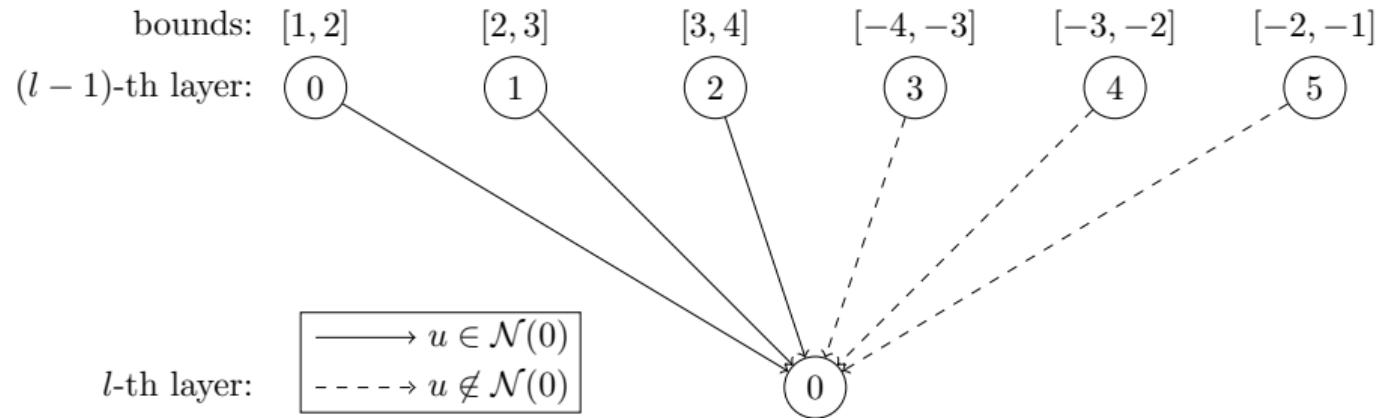


To get the bounds for node 0 in l -th layer, *basic* considers all possibilities of input nodes:

- $lb = \min(0, 1) + \min(0, 2) + \min(0, 3) + \min(0, -4) + \min(0, -3) + \min(0, -2) = -9$.
- $ub = \max(0, 2) + \max(0, 3) + \max(0, 4) + \max(0, -3) + \max(0, -2) + \max(0, -1) = 9$.

Static bounds tightening (sbt)

Given that the budget, i.e., the maximal number of modified edges of node 0, is 3. Denote the set of input nodes as $\mathcal{N}'(0)$, then we need to make sure that $|\mathcal{N}'(0) \Delta \mathcal{N}(0)| \leq 3$.

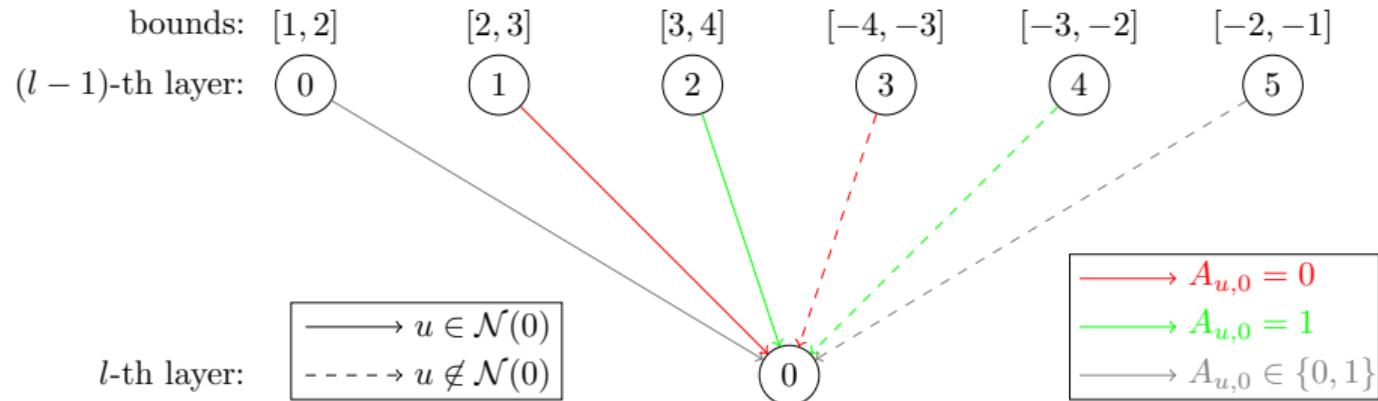


Comparing all possible options gives the sbt bounds:

- $lb = 1 + 2 - 4 - 3 = -4$: $\mathcal{N}'(0) = \{0, 1, 3, 4\}$, i.e., remove node 2 + add node 3 and 4.
- $ub = 2 + 3 + 4 = 9$: $\mathcal{N}'(0) = \mathcal{N}(0)$.

Aggressive bounds tightening (abt)

Assume that 4 decisions have been made in current branch-and-bound (B&B) tree node, which are $A_{1,0} = 0, A_{2,0} = 1, A_{3,0} = 0, A_{4,0} = 1$. Then we only have 1 budget left.

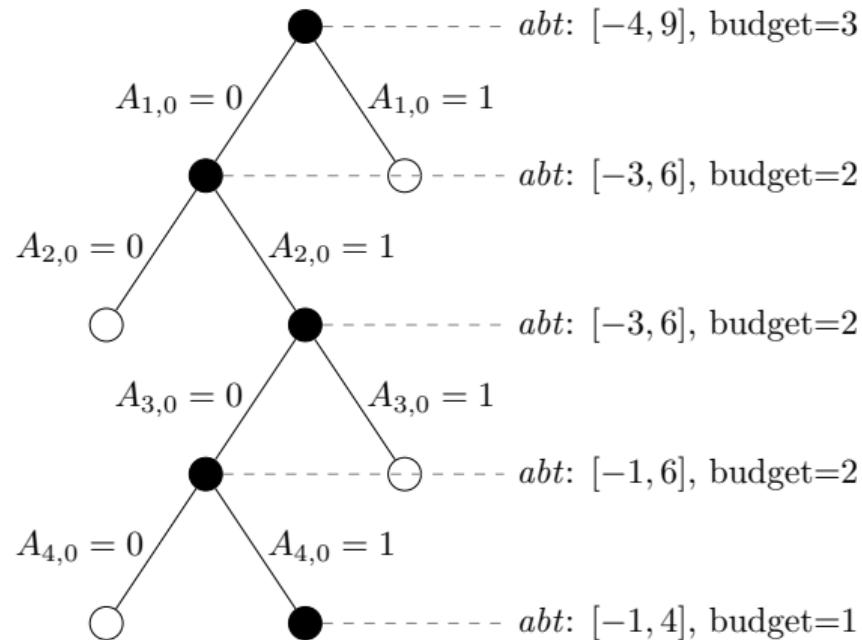


We can (i) change nothing, or (ii) remove node 0, or (iii) add node 5. The *abt* bounds are:

- $lb = 1 + 3 - 3 - 2 = -1$: add node 5.
- $ub = 2 + 4 - 2 = 4$: change nothing.

abt extends *sbt* to each B&B tree node

abt can be interpreted as applying *sbt* to a modified graph with reduced budgets at each B&B tree node. At root node, $abt = sbt$.



Numerical results

benchmark	method	all instances			robust instances		
		#	avg-time(s)	# solved	#	avg-time(s)	# solved
ENZYMES	SCIPbasic	5915	605.97	5579	3549	278.58	3444
	SCIPsbt	5915	230.59	5831	3549	82.89	3528
	SCIPabt	5915	246.02	5817	3549	88.95	3522
MUTAG	SCIPbasic	1589	679.86	1575	44	798.47	40
	SCIPsbt	1589	196.07	1589	44	336.41	44
	SCIPabt	1589	207.50	1589	44	238.10	44

Conclusion

Based on the results of our SCIP implementation, we have the following observations:

- For moderate robust instances, $basic < sbt \approx abt$.
- For hard robust instances, $basic < sbt < abt$.
- For non-robust instances, $basic < abt < sbt$.

For a non-robust instance, the target is not verification but finding an attack. In such cases, tighter bounds derived from more cutting planes could result in slower solving times.

arXiv

GitHub

c.hojny@tue.nl

s.zhang21@imperial.ac.uk