
Verifying message-passing neural networks via topology-based bounds
tightening

Christopher Hojny∗,1, Shiqiang Zhang∗,2, Juan S. Campos2, Ruth Misener2

∗ These authors contributed equally.
1 Eindhoven University of Technology, Eindhoven, The Netherlands

2 Imperial College London, London, UK

Funding: EPSRC EP/W003317/1 & EP/T001577/1

Hojny, Zhang, Campos, Misener MPNN verification 1 / 14

Adversarial attack v.s. Certifiable robustness

Machine learning models are vulnerable: small input changes could lead to wrong predictions.

Denote f as a model, assume P(X∗) is the admissible perturbations on input X∗.

Adversarial attack

∃X ∈ P(X∗), s.t., f (X) 6= f (X∗)

Certifiable robustness

f (X) = f (X∗), ∀X ∈ P(X∗)

Besides input features, the graph structure involved in graph neural networks (GNNs) provides
more options to attack (), while makes it harder to be verified (certified robustness).

Hojny, Zhang, Campos, Misener MPNN verification 2 / 14

Problem definition

Given a trained GNN f for graph/node classification task, where the predicted label
corresponds to the maximal logit. Given an input (X∗,A∗) consisting of features X∗ and
adjacency matrix A∗, denote its predictive label as c∗. The worst case margin between
predictive label c∗ and attack label c under perturbations P(·) is:

m(c∗, c) := min
(X ,A)

fc∗(X ,A)− fc(X ,A)

s.t. X ∈ P(X∗), A ∈ P(A∗).
(1)

A positive m(c∗, c) means that the logit of class c∗ is always larger than class c.

Let C be the set of all classes. If m(c∗, c) > 0,∀c ∈ C\{c∗}, then any admissible perturbation
can not change the predictive label, i.e., this GNN is robust at (X∗,A∗).

Hojny, Zhang, Campos, Misener MPNN verification 3 / 14

Admissible perturbations

Perturbations on features, i.e., P(X∗), are usually defined as a lp norm ball around X∗. The
choice of norm is quite flexible for attack since one feasible attack is sufficient. For verification,
l∞ norm is most commonly used since it defines bounds for each feature separately.

Remark: If only feature perturbations are allowed, then verifying a GNN is equivalent to
verifying a NN since the connections between layers are fixed.

New challenges for GNN verification:
Perturbations on graph structure, e.g., add edges/remove edges/inject nodes, directly
change the connections between layers.
Perturbations on one node indirectly attack other nodes via message passing or graph
convolution.

Hojny, Zhang, Campos, Misener MPNN verification 4 / 14

Verification of message passing neural networks (MPNNs)
Motivation: classic and general GNN framework, but few certificates.

Tool: a recently developed mixed-integer programming (MIP) formulation for MPNNs.

Definition: consider a MPNN with l-th layer defined as:

x(l)
v = ReLU

(∑
u∈V

Au,vw(l)
u→vx(l−1)

u + b(l)
v

)
, ∀v ∈ V (2)

where V = {0, 1, . . . ,N − 1} is the node set, N is the number of nodes, Au,v ∈ {0, 1} denotes
the existence of edge u → v.

Perturbations:
Graph classification: remove/add edges with global/local budgets.
Node classification: remove edges with global/local budgets.

Hojny, Zhang, Campos, Misener MPNN verification 5 / 14

Message passing with fixed graph structure

Hojny, Zhang, Campos, Misener MPNN verification 6 / 14

Message passing with unknown graph structure

x0

x1

x2

x3

x4

x5

x6

x0

x1

x2

x3

x4

x5

x6

(l − 1)th layer lth layerx(l)
v = ReLU

(∑
u∈V

Au,vw
(l)
u→vx

(l−1)
u + b(l)

v

)

ReLU

b
(l)
0

A0,0w
(l)
0→0x

(l−1)
0

A1,0w
(l)
1→0x

(l−1)
1

A2,0w
(l)
2→0x

(l−1)
2

A3,0w
(l)
3→0x

(l−1)
3

A4,0w
(l)
4→0x

(l−1)
4

A5,0w
(l)
5→0x

(l−1)
5

A6,0w
(l)
6→0x

(l−1)
6

Hojny, Zhang, Campos, Misener MPNN verification 7 / 14

MIP encoding of MPNNs

x(l)
v = max{ x̄(l)

v︸︷︷︸y
,0} ←−−−−−−−−−−−−−−−−−−−−−→



x(l)
v,f ≥ 0

x(l)
v,f ≥ x̄(l)

v,f

x(l)
v,f ≤ x̄(l)

v,f − lb(x̄(l)
v,f) · (1− σ

(l)
v,f)

x(l)
v,f ≤ ub(x̄(l)

v,f) · σ
(l)
v,f

x̄(l)
v =

∑
u∈V

w(l)
u→vx(l−1)

u→v + b(l)
vx︷ ︸︸ ︷

x(l−1)
u→v = Au,vx(l−1)

u ↔



x(l−1)
u→v,f ≥ lb(x(l−1)

u,f) ·Au,v

x(l−1)
u→v,f ≤ ub(x(l−1)

u,f) ·Au,v

x(l−1)
u→v,f ≤ x(l−1)

u,f − lb(x(l−1)
u,f) · (1−Au,v)

x(l−1)
u→v,f ≥ x(l−1)

u,f − ub(x(l−1)
u,f) · (1−Au,v)

Hojny, Zhang, Campos, Misener MPNN verification 8 / 14

Basic bounds tightening (basic)
Assume that there are N = 6 nodes with only one input and output feature. For simplicity,
assume all weights equal to 1 and all biases equal to 0.

0 1 2 3 4 5

bounds:

(l − 1)-th layer:

l-th layer:

[1, 2] [2, 3] [3, 4] [−4,−3] [−3,−2] [−2,−1]

0

u ∈ N (0)

u ̸∈ N (0)

To get the bounds for node 0 in l-th layer, basic considers all possibilities of input nodes:
lb = min(0, 1) + min(0, 2) + min(0, 3) + min(0,−4) + min(0,−3) + min(0,−2) = −9.
ub = max(0, 2) + max(0, 3) + max(0, 4) + max(0,−3) + max(0,−2) + max(0,−1) = 9.

Hojny, Zhang, Campos, Misener MPNN verification 9 / 14

Static bounds tightening (sbt)
Given that the budget, i.e., the maximal number of modified edges of node 0, is 3. Denote the
set of input nodes as N ′(0), then we need to make sure that |N ′(0)∆N (0)| ≤ 3.

0 1 2 3 4 5

bounds:

(l − 1)-th layer:

l-th layer:

[1, 2] [2, 3] [3, 4] [−4,−3] [−3,−2] [−2,−1]

0

u ∈ N (0)

u ̸∈ N (0)

Comparing all possible options gives the sbt bounds:
lb = 1 + 2−4−3 = −4: N ′(0) = {0, 1, 3, 4}, i.e., remove node 2 + add node 3 and 4.
ub = 2 + 3 + 4 = 9: N ′(0) = N (0).

Hojny, Zhang, Campos, Misener MPNN verification 10 / 14

Aggressive bounds tightening (abt)
Assume that 4 decisions have been made in current branch-and-bound (B&B) tree node,
which are A1,0 = 0,A2,0 = 1,A3,0 = 0,A4,0 = 1. Then we only have 1 budget left.

0 1 2 3 4 5

bounds:

(l − 1)-th layer:

l-th layer:

[1, 2] [2, 3] [3, 4] [−4,−3] [−3,−2] [−2,−1]

0

u ∈ N (0)

u ̸∈ N (0)

Au,0 = 0

Au,0 = 1

Au,0 ∈ {0, 1}

We can (i) change nothing, or (ii) remove node 0, or (iii) add node 5. The abt bounds are:
lb = 1 + 3− 3− 2 = −1: add node 5.
ub = 2 + 4− 2 = 4: change nothing.

Hojny, Zhang, Campos, Misener MPNN verification 11 / 14

abt extends sbt to each B&B tree node
abt can be interpreted as applying sbt to a modified graph with reduced budgets at each B&B
tree node. At root node, abt = sbt.

A1,0 = 0 A1,0 = 1

A2,0 = 0 A2,0 = 1

A3,0 = 0 A3,0 = 1

A4,0 = 0 A4,0 = 1

abt : [−4, 9], budget=3

abt : [−3, 6], budget=2

abt : [−3, 6], budget=2

abt : [−1, 6], budget=2

abt : [−1, 4], budget=1

Hojny, Zhang, Campos, Misener MPNN verification 12 / 14

Numerical results

benchmark method all instances robust instances

avg-time(s) # solved # avg-time(s) # solved

ENZYMES
SCIPbasic 5915 605.97 5579 3549 278.58 3444
SCIPsbt 5915 230.59 5831 3549 82.89 3528
SCIPabt 5915 246.02 5817 3549 88.95 3522

MUTAG
SCIPbasic 1589 679.86 1575 44 798.47 40
SCIPsbt 1589 196.07 1589 44 336.41 44
SCIPabt 1589 207.50 1589 44 238.10 44

Hojny, Zhang, Campos, Misener MPNN verification 13 / 14

Conclusion
Based on the results of our SCIP implementation, we have the following observations:

For moderate robust instances, basic < sbt ≈ abt.
For hard robust instances, basic < sbt < abt.
For non-robust instances, basic < abt < sbt.

For a non-robust instance, the target is not verification but finding an attack. In such cases,
tighter bounds derived from more cutting planes could result in slower solving times.

arXiv GitHub

c.hojny@tue.nl

s.zhang21@imperial.ac.uk

Hojny, Zhang, Campos, Misener MPNN verification 14 / 14

	anm0:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

