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Importance of Partial Differential Equations

Problems in science and engineering
reduce to PDEs
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Two main cases: Initial condition problems

Heat equation:
Spatial domain: D = [0,1] x [0,1]

Time domain: T = [0,1]

Points: x = (x,y) = (xq1, x3)
Solution function (Temperature): u:TXD - R

Equation: u; = Au

Initial value problem: given the temperature at time t = 0, What is the
temperature atime t = 17?

Given u(0, x)what is u(1, x)?
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Two main cases: Boundary condition problems

For example a two dimensional elliptic PDE:

~V- (a(x)Vu(x)) = f(x), x €D

Input: a(x) Output: u(x)

Given a(x), what is u(x)?
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Numerical Solver

Pipeline

1. Discretize the space

2. Write out a system

3. Solve the system

Commong numerical methods:

* Finite difference methods

.. wy ) = lim [u(x + dx) — u(x)]
* Finite element methods do
[u(x +dx) — ux)]

Uy (%) ~ dx

» Spectral methods
, (i jy LD = u@ )]
+ lterative methods (] ix

Trade-off: finer grids are more accurate, but also more expensive
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Role of Deep Learning in PDEs

Physics informed neural networks (PINN)

« Underlying differential equation as a loss-function

Operator Learning

» Fourier Neural Operator (FNO)

» Physics Informed Neural Operator (PINO)
» Graph Neural Operator (GNO)

 FNO Transformer

Encoder-Decoder Networks

Graph Neural Networks
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The Need for Innovative Solutions

Adapting to Varied Geometries:

« The demand for PDE solutions that can adapt to arbitrary geometries and diverse input
formats has driven the search for innovative neural network architectures.

Addressing Computational Challenges:

« There is a growing need for models that can handle increasing data complexity and noise
while maintaining computational efficiency.
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Challenges in Current Numerical Approaches

Limited Generalizability:

« Existing techniques may struggle to generalize across multiple PDE instances and lack
discretization invariance, impacting their adaptability to diverse scenarios.

Inability to Generalize Beyond Specific Resolutions:

« Current methods may face limitations in generalizing beyond specific resolutions and
geometries observed during training, hindering their applicability to varied scenarios.
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Formulation of the Problem

P:PxDxVxR"x...xR™" >R DcR®>VcR™ PcRP
P(O,x,u,@mlu,..ﬁwnu,...,8;"11---83‘:11,) =0

For most of the problems at least one of the conditions is fulfilled:

u(z) =ug(xz), xeDyx{Tp}, DycR™!
u(z) =up(z), x€dDyxT, T c Ry

Formulation as operator learning:

S:PxDxR™x.. xR"xREXRE - Y

(0,2,0z,u,...0z,4,...,001-05 U, up, up) + U
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Two examples from before

* Darcy flow PDE:

-V (a(x)Vu(x)) = f(x) S:a—u n

Input: a(x) Output: u(x)

« Heat equation:

ur = Au S:uy — u(t) ‘ 0

A discretization is needed
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Addressing Limitations with Neural Operators

» |ldea: We want to learn the solution operator directly from data

« Approximate the solution operator with a neural network -> Neural
Operator

* The two main examples are the FNO (Fourier Neural Operator) and the
GNO (Graph Neural Operator)

S:D —>)Y D bean L-point discretisation of D

~

S, the approximate solution operator.

Ry (S,SN,DL) = sup ||5 (D, 0|p) ‘5(9)”1; J\l’im Ry (8(-, 0),S(N)(.7 . 0),D(N)) =0
PeK —>00

Discretization invariance
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Fourier Neural Operator

O=0"—0

S R

A

@/ M\“
Figure 1 — layer of the Fourier neural operator

S~u = Qo (Wr+Kp+br)o-ooa(Wy+K1+b1)oP

Integral Kernel Operators
Ki:{D—> R4} > {U > Ré1} - F (R¢ . (]—'vt)) () VzeD

Depending on discretization and uniform grids

7@ UNIVERSITY OF

- IR

“§> CAMBRIDGE




Graph Neural Operator !

veia(a) = (Worla) + [ wo(o (o), alo))us(o) va(a) )

Vit1(x) = Woe(z) + Z Ko (e(z,y))ve(y)
yeN(z)
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The Role of Graph Transformer Architectures

« Can we make a neural operator, which is adaptable to any grid
realizations and can work with a multi-modality framework?

« Can we break down the efficiency of the neural operator and enhance
the information in the data (data limitation)?

« Can we create a flexible approach with easy extendibility?

» A Graph Transformer indeed represents a neural operator

7@ UNIVERSITY OF

- IR

“§> CAMBRIDGE




Outlook for the new architecture

» Include information for properties of the PDE directly in the architecture using
multihead attention (with two output channels)

* boundary conditions
 Initial value conditions
» Use the flexibility and efficiency of graph transformer in the architecture

 Different graph structures are used to increase details resolutions

» Propagate the solution in the latent space and transform it afterwards into a
graph structure
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Introducing HAMLET
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Table 1. Numerical comparison of our approaches vs. existing techniques. The values reflect the nRMSE. The best-performing results are
highlighted in green .

DATASET SETTING Normalised RMSE (nRMSE)

Dataset Param. | GNOT U-Net FNO DeepONet OFormer GeoFNO MAgNet HAMLET
Darcy Flow B=0.01 - 1.10E+00 2.50E+00 3.25E-01 3.04E-01 1.03E+00 7.71E-02 3.11E-01
Darcy Flow B=0.1 - 1.80E-01 2.20E-01 1.67E-01 1.15E-01 3.13E-01 8.10E-02 7.65E-02
Darcy Flow B=1.0 - 3.30E-02 6.40E-02  5.12E-02  2.05E-02 6.34E-02 1.03E-01 1.40E-02
Darcy Flow B =10.0 - 8.20E-03 1.20E-02 3.97E-02 6.34E-03 2.51E-02 1.62E-01 4.77E-03
Darcy Flow B =100.0 - 4.40E-03 6.40E-03 3.64E-02 4.19E-03 2.04E-02 1.95E-01 3.46E-03

Shallow Water - 4.16E-03 8.30E-02 4.40E-03 2.35E-03 290E-03 6.70E-03 - 2.04E-03
Diffusion Reaction - 822E-01 8.40E-01 1.20E-01 842E-01 3.28E+00 7.72E+00 - 9.02E-02

Prediction
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Figure 4. Predictions and corresponding error maps for Geo-FNO,
OFormer, and HAMLET models using Darcy Flow (8 = 1.0).



Scalability and Robustness
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Table 2. Ablation studies for graph constructions on Darcy Flow .
2D (8 = 1.0) in 64 x 64 grid. (B) Ablation Study
KN Position Encoding

k=21 k=51 k=101 k=151 Circular
nRMSE 0.02018 0.01996 0.02054 0.02094 0.01402




Impact of Data Size on Model Performance
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OFormer 2.048E-02 2.093E-02 2.674E-02 3.321E-02 OFormer 2.900E-03 1.190E-02 2.310E-02 2.910E-02
HAMLET 1.402E-02 1.642E-02 2.211E-02 2.779E-02 HAMLET 2.044E-03 2.320E-03 3.255E-03 4.746E-03
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Evaluation Protocol in time dependent problems
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Conclusion and Future Directions

« Offers a flexible and robust solution adaptable to various geometries and conditions.
employs modular input encoders and establishes new benchmarks in scenarios with
limited data availability.

Limitation:

« Graph construction time is a limitation, common in graph-based approaches. An
increased number of parameters and lack of interpretability

* Not adaptable to every problem

Future Work:

 Integration of Lie-symmetry preservation and augmentation.

« Extension to handle higher-dimensional PDEs, including 3D problems.

» Dedicated exploration to refine the model architecture.

* Multiple parameter meshes and estimations




Call to Action

« Establish and promote the use of standardized benchmarks for evaluating neural operators of PDEs.
Provide a common ground for comparison, ensuring consistent evaluation metrics.

* Rethink current evaluation methods to include a broader range of problem settings and conditions.
Standardize the reporting of results to include crucial error analysis. Compare to existing methods like
FEM, FDM, spectral methods...

* Encourage the publication and discussion of frameworks and approaches that did not succeed.

» Investigate the integration of physical laws and symmetries into neural operator frameworks. Explore
hybrid models that combine traditional numerical methods with neural operators.

» Aim for the development of general-purpose neural operators capable of solving a wide variety of
PDEs. Less parameter tuning and adaptability for datasets.
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Thank you very much for your attention
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