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Importance of Partial Differential Equations

Problems in science and engineering 
reduce to PDEs



Two main cases: Initial condition problems

Heat equation:

Spatial domain: 𝐷 = 0,1 	×	[0,1]

Time domain:		𝑇 = [0,1]

Points: 𝑥⃑ = 𝑥, 𝑦 = (𝑥!, 𝑥")

Solution function (Temperature): 𝑢: 𝑇×𝐷	 → 	ℝ

Equation: 𝑢# = 	Δ𝑢

Initial value problem: given the temperature at time 𝑡 = 0, What is the 
temperature a time 𝑡 = 1?

Given 𝑢 0, 𝑥 what is 𝑢(1, 𝑥)?



Two main cases: Boundary condition problems

For example a two dimensional elliptic PDE:

Given 𝑎 𝑥 , what is 𝑢(𝑥)?

−∇ - 𝑎 𝑥 ∇𝑢 𝑥 = 𝑓 𝑥 , 	 𝑥 ∈ 𝐷



Numerical Solver

Pipeline

1. Discretize the space
2. Write out a system

3. Solve the system

Commong numerical methods:
• Finite difference methods

• Finite element methods
• Spectral methods

• Iterative methods

Trade-off: finer grids are more accurate, but also more expensive



Role of Deep Learning in PDEs

• Physics informed neural networks (PINN)
• Underlying differential equation as a loss-function

• Operator Learning
• Fourier Neural Operator (FNO)
• Physics Informed Neural Operator (PINO)
• Graph Neural Operator (GNO)
• FNO Transformer

• Encoder-Decoder Networks

• Graph Neural Networks



The Need for Innovative Solutions

Adapting to Varied Geometries: 

• The demand for PDE solutions that can adapt to arbitrary geometries and diverse input 
formats has driven the search for innovative neural network architectures.

Addressing Computational Challenges: 

• There is a growing need for models that can handle increasing data complexity and noise 
while maintaining computational efficiency.



Challenges in Current Numerical Approaches

Limited Generalizability:

• Existing techniques may struggle to generalize across multiple PDE instances and lack 
discretization invariance, impacting their adaptability to diverse scenarios.

Inability to Generalize Beyond Specific Resolutions: 

• Current methods may face limitations in generalizing beyond specific resolutions and 
geometries observed during training, hindering their applicability to varied scenarios.



Formulation of the Problem

For most of the problems at least one of the conditions is fulfilled:

Formulation as operator learning:



Two examples from before

• Darcy flow PDE:

• Heat equation:

−∇ # 𝑎 𝑥 ∇𝑢 𝑥 = 𝑓 𝑥

𝑢! = 	Δ𝑢

𝑆 ∶ 𝑎	 ⟼ 𝑢

𝑆 ∶ 𝑢" 	⟼ 𝑢(𝑡)

A discretization is needed



Addressing Limitations with Neural Operators

• Idea: We want to learn the solution operator directly from data

• Approximate the solution operator with a neural network -> Neural 
Operator 

• The two main examples are the FNO (Fourier Neural Operator) and the 
GNO (Graph Neural Operator)

Discretization invariance



Fourier Neural Operator

Integral Kernel Operators

Depending on discretization and uniform grids



Graph Neural Operator	𝟏

!Li et al. [2020] https://arxiv.org/abs/2003.03485 



The Role of Graph Transformer Architectures

• Can we make a neural operator, which is adaptable to any grid 
realizations and can work with a multi-modality framework?

• Can we break down the efficiency of the neural operator and enhance 
the information in the data (data limitation)?

• Can we create a flexible approach with easy extendibility?

• A Graph Transformer indeed represents a neural operator



Outlook for the new architecture

• Include information for properties of the PDE directly in the architecture using 
multihead attention (with two output channels)

• boundary conditions

• Initial value conditions

• Use the flexibility and efficiency of graph transformer in the architecture

• Different graph structures are used to increase details resolutions

• Propagate the solution in the latent space and transform it afterwards into a 
graph structure



Introducing HAMLET



Results



Scalability and Robustness



Impact of Data Size on Model Performance



Evaluation Protocol in time dependent problems



Conclusion and Future Directions

• Offers a flexible and robust solution adaptable to various geometries and conditions. 
employs modular input encoders and establishes new benchmarks in scenarios with 
limited data availability.

Limitation:

• Graph construction time is a limitation, common in graph-based approaches. An 
increased number of parameters and lack of interpretability

• Not adaptable to every problem

Future Work:

• Integration of Lie-symmetry preservation and augmentation. 

• Extension to handle higher-dimensional PDEs, including 3D problems.

• Dedicated exploration to refine the model architecture.

• Multiple parameter meshes and estimations



Call to Action

• Establish and promote the use of standardized benchmarks for evaluating neural operators of PDEs. 
Provide a common ground for comparison, ensuring consistent evaluation metrics.

• Rethink current evaluation methods to include a broader range of problem settings and conditions. 
Standardize the reporting of results to include crucial error analysis. Compare to existing methods like 
FEM, FDM, spectral methods…

• Encourage the publication and discussion of frameworks and approaches that did not succeed.

• Investigate the integration of physical laws and symmetries into neural operator frameworks. Explore 
hybrid models that combine traditional numerical methods with neural operators.

• Aim for the development of general-purpose neural operators capable of solving a wide variety of 
PDEs. Less parameter tuning and adaptability for datasets.



Thank you very much for your attention
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