

Content

- Motivation and background
- Main results
- Posterior sampling algorithm
- Experiments
- Conclusion and future work

Constrained RL

- Multi-dimensional feedback
- Restrictions on what policy can do

Constrained MDPs

- CMDP (S, A, p, r, c, τ)
 - Finite state space S and action space $\mathcal{A}(|S| = S, |\mathcal{A}| = A)$
 - Transition kernel p(s'|s,a)
 - Reward function $r(s, a) \in [0,1]$
 - Cost function $c(s, a) \in [0,1]^m$
 - Cost threshold $\tau \in [0,1]^m$
- Policy $\pi: \mathcal{S} \to \Delta(\mathcal{A})$
- Communicating CMDP $\forall s, s'$ there **exists** a stationary policy under which s' is accessible from s in at most D steps (D is diameter)

Objective

Gain (loss) of policy ullet

$$J^{\pi}(r,p) = \overline{\lim}_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} \mathbb{E}_{p}^{\pi} \left[r(s_{t}, a_{t}) \right];$$

Optimal policies

constraints

CMDP example

Performance measure

- Bayesian regret
 - Define Ω a set of transitions p such that resulting CMDP is communicating
 - Let f_0 be a prior distribution over Ω
 - Assume that actual transitions $p_* \sim f_0$

$$BR_+(T,r) = \mathbb{E}_{f_0}\left[\sum_{t=1}^T \left(J^*(r, \mathbf{p_*}) - r(s_t, a_t)\right)_+
ight]$$

$$BR_{+}(T,c_{i}) = \mathbb{E}_{f_{0}}\left[\sum_{t=1}^{T}\left(c_{i}(s_{t},a_{t}) - au_{i}
ight)_{+}
ight], i = 1,\ldots,m.$$

Content

- Motivation and background
- Main results
- Posterior sampling algorithm
- Experiments
- Conclusion and future work

Main result

Theorem:

Suppose CMDP $(S, \mathcal{A}, p_*, r, c, \tau)$ is communicating with diameter D. Then there exists an algorithm such that if $T \ge D^4 S^2 A \log(2AT)^2$ the main regret and constraint violation are bounded by:

$$BR_{+}(T, r) \leq O\left(DS\sqrt{AT\log(AT)}\right)$$

$$BR_{+}(T, c_{i}) \leq O\left(DS\sqrt{AT\log(AT)}\right), i = 1, \dots, m$$

- Implies optimal dependency in terms of T and A
- Matches the best-known bound for unconstrained setting $\tilde{O}(DS\sqrt{TA})$
- First near-optimal bound achieved by computationally tractable algorithm

Content

- Motivation and background •
- Main results •
- Posterior sampling algorithm
- Experiments
- Conclusion and future work •

Feasibility

Slater's condition

$$\exists \quad \pi: \quad J^{\pi}(\mathbf{c}, p_*) < \tau - \gamma$$

 Relationship between losses and transitions

$$J^{\pi}(\mathbf{c},\tilde{p}) - J^{\pi}(\mathbf{c},p_*) \leq D||\tilde{p}(\,\cdot\,|s,a) - p_*(\,\cdot\,|s,a)||_1$$
 difference in losses deviation between sampled and true transitions

PSConRL

Form empirical CMDP $\tilde{p}(s'|s,a) \sim f(\cdot \mid N_{sas'}), \hat{r}(s,a) = \frac{\sum r_{sa}}{N(s,a)},$

$$\hat{c}(s,a) = \frac{\sum c_{sa}}{N(s,a)}$$

- If CMDP \tilde{p} is feasible
 - a) Solve CMDP: Find $\hat{\pi}$ which is optimal for CMDP $(S, \mathcal{A}, \tilde{p}, \hat{r}, \hat{c}, \tau)$
- If CMDP \tilde{p} is not feasible
 - b) Explore more: Find $\hat{\pi}$ which explores environment efficiently
- Execute $\hat{\pi}$ and collect more data*

Linear program for CMDPs

^{*} we split interaction into artificial episodes based on doubly-epoch construction technique

Linear program for CMDPs

$$\max_{\mu} \sum_{s,a} \mu(s,a) r(s,a),$$
 Linear program in occupancy measure μ s.t.
$$\sum_{s,a} \mu(s,a) c_i(s,a) \leq \tau_i, \quad i=1,\ldots,m,$$

$$\sum_{a} \mu(s,a) = \sum_{s',a} \mu(s',a) p(s',a,s), \quad \forall s \in \mathcal{S},$$

$$\mu(s,a) \geq 0, \quad \forall (s,a) \in \mathcal{S} \times \mathcal{A}, \quad \sum_{s,a} \mu(s,a) = 1;$$
 Optimal policy
$$\pi_*(a|s) = \frac{\mu_*(s,a)}{\sum_{a'} \mu_*(s,a')}$$

PSConRL

- 1. Form empirical CMDP $\tilde{p}(s'|s,a) \sim f(\cdot \mid N_{sas'}), \hat{r}(s,a) = \frac{\sum r_{sa}}{N(s,a)},$ $\hat{c}(s,a) = \frac{\sum c_{sa}}{N(s,a)}$
- 2. If CMDP \tilde{p} is feasible
 - a) Solve CMDP: Find $\hat{\pi}$ which is optimal for CMDP $(S, \mathcal{A}, \tilde{p}, \hat{r}, \hat{c}, \tau)$
- 3. If CMDP \tilde{p} is not feasible
 - b) Explore more: Find $\hat{\pi}$ which explores environment efficiently
- 4. Execute $\hat{\pi}$ and collect more data*

Reduction to exploration MDPs

* we split interaction into artificial episodes based on doubly-epoch construction technique

Exploration MDP

 $(\mathcal{S}, \mathcal{A}, p, c_{\bar{s}})$ for $\bar{s} \in \mathcal{S}$ – set of exploration MDPs

$$c_{\bar{s}}(s, a) = \begin{cases} 1, & \text{if } s \neq \bar{s}; \\ 0, & \text{otherwise.} \end{cases}$$

Bellman optimality eq-n for average reward MDP

Why extra exploration? PSConRL vs PSRL-CMDP

$$r(s_1,\cdot) = 1, c(s_1,\cdot) = 1$$

 $r(s_2,\cdot) = 0, c(s_2,\cdot) = 0$

- PSRL-CMDP posterior sampling algorithm that doesn't reduce to exploration MDPs
- Suitable only for ergodic CMDPs
 - Can't guarantee feasibility in communicating CMDPs

Why extra exploration?

- PSConRL effectively learns the true transition parameter θ
- PSConRL achieves optimal average cost and fluctuates around it
- CMDP-PSRL fails to do so due to its unexplorative nature

Content

- Motivation and background
- Main results
- Posterior sampling algorithm
- Experiments
- Conclusion and future work

Marsrover environments

Box environment

Starting configuration

Move box right

Move box left

Empirical reward and cost

- PSConRL converges to optimal performance significantly ahead of baselines
- Optimistic algorithms
 UCRL-CMDP, FHA-Alg 3
 fail to scale beyond the
 smallest environment
- C-UCRL is too conservative for constrained RL

Content

- Motivation and background
- Posterior sampling algorithm
- Main theoretical results
- Experiments
- Conclusion and future work

Takeaways

- PSConRL is practical and computationally efficient
 - (compared to optimistic algorithms)
 - It doesn't require any additional knowledge from the environment
 - It has polynomial time complexity in problem parameters
- PSConRL introduces a novel efficient exploration mechanism
 - PSConRL enjoys near-optimal Bayesian regret bound
 - PSConRL vs. CMDP-PSLR comparison highlights that the exploration step is essential for effective learning in communicating CMDPs
- A novel analysis of feasibility in constrained RL
 - First feasibility guarantees that don't rely on brute force optimization
 - Holds for frequentist setting

Future work

- Limitations of the current work
 - Bayesian regret to frequentist regret
 - Asymptotic regret bound
 - Finite S and A

Thank you for listening!

Questions?

Poster

Efficient Exploration in Average-Reward Constrained Reinforcement Learning: Achieving
Near-Optimal Regret With Posterior Sampling

Danil Provodin · Maurits Kaptein · Mykola Pechenizkiy Hall C 4-9

[Abstract]
Wed 24 Jul 1:30 p.m. CEST – 3 p.m. CEST (Bookmark)

Open for Collaboration

Excited to explore new collaboration opportunities. If you're interested in working together, please feel free to reach out.

Contact: d.provodin@tue.nl

LinkedIn: linkedin.com/in/danil-provodin/

Why average-reward criterion?

- Discounted MDPs are ubiquitous in RL
 - Sometimes discount factor γ is inherent part of the problem
 - Or a problem has a small horizon
- Often we care about long-term performance (infinite horizon)
 - γ becomes part of the solution method, artificial discounting

Examining average and discounted reward optimality criteria in reinforcement learning

Comparison to the existing literature

	Algorithm	Main Regret	Constraint violation	CMDP class	Required knowledge	Computation
frequentist	C-UCRL (Zheng & Ratliff, 2020)	$\tilde{O}(mSAT^{3/4})$	0	ergodic	safe policy π and p	efficient
	UCRL-CMDP (Singh et al., 2023)	$\tilde{O}(T_M\sqrt{SA}T^{2/3})$	$\tilde{O}(T_M\sqrt{SA}T^{2/3})$	ergodic	T	inefficient
	Alg. 3 (Chen et al., 2022)	$\tilde{O}(sp(p)(S^2AT^2)^{1/3})$	$\tilde{O}(sp(p)(S^2AT^2)^{1/3})$	weakly communicating	sp(p), T	inefficient
	Alg. 4 (Chen et al., 2022)	$\tilde{O}(sp(p)S\sqrt{AT})$	$\tilde{O}(sp(p)S\sqrt{AT})$	weakly communicating	sp(p), T	intractable
Bayesian	CMDP-PSRL (Agarwal et al., 2022)	$\tilde{O}(T_M S \sqrt{AT})$	$\tilde{O}(T_M S \sqrt{AT})$	ergodic	-	efficient
	PSCONRL (this paper)	$\tilde{O}(DS\sqrt{AT})$	$\tilde{O}(DS\sqrt{AT})$	communicating	-	efficient
	lower bound (Singh et al., 2023)	$\Omega(\sqrt{DSAT})$	$\Omega(\sqrt{DSAT})$	-	-	-

Empirical regret

