Efficient Exploration in Average-Reward Constrained RL: Achieving Near-Optimal Regret With Posterior Sampling

ICML2024 SLIDES

Danil Provodin, PhD Candidate

Department of Mathematics and Computer Science, Data and AI cluster

Content

- Motivation and background
- Main results
- Posterior sampling algorithm
- Experiments
- Conclusion and future work

Efficient Exploration in Average-Reward Constrained RL: Achieving Near-Optimal Regret With Posterior Sampling ⁴

Constrained RL

Constrained MDPs

- CMDP $(\mathcal{S}, \mathcal{A}, p, r, c, \tau)$
	- Finite state space S and action space \mathcal{A} ($|\mathcal{S}| = S$, $|\mathcal{A}| = A$)
	- Transition kernel $p(s'|s, a)$
	- Reward function $r(s, a) \in [0,1]$
	- Cost function $c(s, a) \in [0, 1]^m$
	- Cost threshold $\tau \in [0,1]^m$
- Policy $\pi: \mathcal{S} \to \Delta(\mathcal{A})$
- Communicating CMDP $\forall s, s'$ there exists a stationary policy under which s' is accessible from s in at most D steps (D is diameter)

Objective

• Gain (loss) of policy

$$
J^{\pi}(r,p) = \overline{\lim}_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} \mathbb{E}_{p}^{\pi} \left[r(s_t, a_t) \right];
$$

• Optimal policies
\n
$$
\underbrace{\left(\sup_{\pi} J^{\pi}(r, p)\right) \text{ s.t. } \left(J^{\pi}(c_i, p) \leq \tau_i\right) i = 1, \ldots, m}_{\pi};
$$

Main objective

Efficient Exploration in Average-Reward Constrained RL: Achieving Near-Optimal Regret With Posterior Sampling ⁷

constraints

CMDP example

Performance measure

- Bayesian regret
	- Define Ω a set of transitions p such that resulting CMDP is communicating
	- Let f_0 be a prior distribution over Ω
	- Assume that actual transitions $p_* \sim f_0$

main regret

constraint violation

$$
BR_{+}(T,r) = \mathbb{E}_{f_0} \left[\sum_{t=1}^{T} (J^*(r, p_*) - r(s_t, a_t))_{+} \right]
$$

$$
BR_{+}(T, c_i) = \mathbb{E}_{f_0} \left[\sum_{t=1}^{T} (c_i(s_t, a_t) - \tau_i)_{+} \right], i = 1, ..., m.
$$

Efficient Exploration in Average-Reward Constrained RL: 9 Efficient Exploration in Average Tieward Constrained NE.
Achieving Near-Optimal Regret With Posterior Sampling

Content

- Motivation and background
- Main results
- Posterior sampling algorithm
- Experiments
- Conclusion and future work

Main result

Theorem:

Suppose CMDP (*S, A,* p_*, r, c, τ) is communicating with diameter $D.$ Then there exists an algorithm such that if $T\geq D^4S^2A\,\log(2AT)^2$ the main regret and constraint violation are bounded by:

$$
BR_{+}(T,r) \le O\left(DS\sqrt{AT\log(AT)}\right)
$$

$$
BR_{+}(T,c_i) \le O\left(DS\sqrt{AT\log(AT)}\right), i = 1, ..., m
$$

- Implies optimal dependency in terms of T and A
- Matches the best-known bound for unconstrained setting $\tilde{O}(DS\sqrt{TA})$
- First near-optimal bound achieved by computationally tractable algorithm

Content

- Motivation and background
- Main results
- Posterior sampling algorithm
- Experiments
- Conclusion and future work

Feasibility

• Slater's condition

 $\exists \pi: J^{\pi}(\mathbf{c}, p_*) < \tau - \gamma$

• Relationship between losses and transitions

$$
J^{\pi}(\mathbf{c}, \tilde{p}) - J^{\pi}(\mathbf{c}, p_*) \leq D||\tilde{p}(\cdot|s, a) - p_*(\cdot|s, a)||_1
$$

difference in losses
deviation between sampled and true transitions

JADS

Efficient Exploration in Average-Reward Constrained RL: Achieving Near-Optimal Regret With Posterior Sampling

PSConRL

1. Form empirical CMDP $\widetilde{p}(s'|s,a) \sim f(\cdot | N_{sas'})$, $\hat{r}(s,a) = \frac{\sum r_{sa}}{N(s,a)}$ $\frac{\Delta \cdot sa}{N(s,a)},$

$$
\hat{c}(s,a) = \frac{\sum c_{sa}}{N(s,a)}
$$

- 2. If CMDP \tilde{p} is feasible
	- Solve CMDP: Find $\hat{\pi}$ which is optimal for CMDP (S, A, \tilde{p} , \hat{r} , \hat{c} , τ)
- 3. If CMDP \tilde{p} is not feasible
	- b) Explore more: Find $\hat{\pi}$ which explores environment efficiently
- 4. Execute $\hat{\pi}$ and collect more data*

Linear program for CMDPs

* we split interaction into artificial episodes based on doubly-epoch construction technique

```
Efficient Exploration in Average-Reward Constrained RL: 
14 Embroid Exploration in Average Treward Constrained It.<br>Achieving Near-Optimal Regret With Posterior Sampling
```


Linear program for CMDPs

$$
\max_{\mu} \sum_{s,a} \mu(s,a)r(s,a),
$$
\nLinear program in
\ns.t.
$$
\sum_{s,a} \mu(s,a)c_i(s,a) \leq \tau_i, \quad i = 1,...,m,
$$
\n
$$
\sum_{a} \mu(s,a) = \sum_{s',a} \mu(s',a)p(s',a,s), \quad \forall s \in S,
$$
\n
$$
\mu(s,a) \geq 0, \quad \forall (s,a) \in S \times A, \quad \sum_{s,a} \mu(s,a) = 1;
$$
\nOptimal policy
\n
$$
\pi_*(a|s) = \frac{\mu_*(s,a)}{\sum_{a'} \mu_*(s,a')}
$$
\nOptimal policy

Efficient Exploration in Average-Reward Constrained RL: 15 EINCRITE EXPLOTATION IN AVERAGE-NEWSILE CONSUMING NE.
Achieving Near-Optimal Regret With Posterior Sampling

PSConRL

1. Form empirical CMDP $\widetilde{p}(s'|s,a) \sim f(\cdot | N_{sas'})$, $\hat{r}(s,a) = \frac{\sum r_{sa}}{N(s,a)}$ $\frac{\Delta \cdot sa}{N(s,a)},$

$$
\hat{c}(s,a) = \frac{\sum c_{sa}}{N(s,a)}
$$

- 2. If CMDP \tilde{p} is feasible
	- Solve CMDP: Find $\hat{\pi}$ which is optimal for CMDP ($\mathcal{S}, \mathcal{A}, \tilde{\rho}, \hat{r}, \hat{c}, \tau$)
- 3. If CMDP \tilde{p} is not feasible
	- b) Explore more: Find $\hat{\pi}$ which explores environment efficiently
- 4. Execute $\hat{\pi}$ and collect more data*

Reduction to exploration MDPs

* we split interaction into artificial episodes based on doubly-epoch construction technique

Exploration MDP

(S, A, p , $c_{\bar{s}}$) for $\bar{s} \in S$ – set of exploration MDPs

$$
c_{\bar{s}}(s, a) = \begin{cases} 1, & \text{if } s \neq \bar{s}; \\ 0, & \text{otherwise}. \end{cases}
$$

$$
(J^*(c_{\bar{s}}, p)) + (v^*(s; c_{\bar{s}}, p)) = \min_{a \in \mathcal{A}} \left\{ c_{\bar{s}}(s, a) + \sum_{s' \in \mathcal{S}} p(s'|s, a)v^*(s'; c_{\bar{s}}, p) \right\}, \forall s \in \mathcal{S}.
$$

bias function
Bellman optimality eq-n for average reward MDP

Why extra exploration? PSConRL vs PSRL-CMDP

- PSRL-CMDP posterior sampling algorithm that doesn't reduce to exploration MDPs
- Suitable only for ergodic CMDPs
	- Can't guarantee feasibility in communicating CMDPs

 $r(s_1, \cdot) = 1, c(s_1, \cdot) = 1$ $r(s_2, \cdot) = 0, c(s_2, \cdot) = 0$

Efficient Exploration in Average-Reward Constrained RL: 18 Enicient Exploration in Average-Neward Constrained NE.
Achieving Near-Optimal Regret With Posterior Sampling

Why extra exploration?

- PSConRL effectively learns the true transition parameter θ
- PSConRL achieves optimal average cost and fluctuates around it
- CMDP-PSRL fails to do so due to its unexplorative nature

Content

- Motivation and background
- Main results
- Posterior sampling algorithm
- Experiments
- Conclusion and future work

Marsrover environments

 $4x4$

Efficient Exploration in Average-Reward Constrained RL: 21 EINCRITE EXPLORATION IN AVERAGE-NEWSITED UPING THE REGIST OF ACHIEVING ACTION ACTION AND REGIST OF THE REGI
21 Achieving Near-Optimal Regret With Posterior Sampling

Box environment

JADS

ہ/

Efficient Exploration in Average-Reward Constrained RL: 22 EINCRITE EXPLOTATION IN AVERAGE-NEW AT CONSTRUCT 22
Achieving Near-Optimal Regret With Posterior Sampling

Empirical reward and cost

- PSConRL converges to optimal performance significantly ahead of baselines
- Optimistic algorithms UCRL-CMDP, FHA-Alg 3 fail to scale beyond the smallest environment
- C-UCRL is too conservative for constrained RL

Efficient Exploration in Average-Reward Constrained RL: 23 Emerent Exploration in Average-Neward Constrained NE.
Achieving Near-Optimal Regret With Posterior Sampling

Content

- Motivation and background
- Posterior sampling algorithm
- Main theoretical results
- Experiments
- Conclusion and future work

Takeaways

- PSConRL is practical and computationally efficient
	- (compared to optimistic algorithms)
	- It doesn't require any additional knowledge from the environment
	- It has polynomial time complexity in problem parameters
- PSConRL introduces a novel efficient exploration mechanism
	- PSConRL enjoys near-optimal Bayesian regret bound
	- PSConRL vs. CMDP-PSLR comparison highlights that the exploration step is essential for effective learning in communicating CMDPs
- A novel analysis of feasibility in constrained RL
	- First feasibility guarantees that don't rely on brute force optimization
	- Holds for frequentist setting

Future work

- Limitations of the current work
	- Bayesian regret to frequentist regret
	- Asymptotic regret bound
	- Finite S and A

Thank you for listening!

Questions?

Poster

口

Efficient Exploration in Average-Reward Constrained Reinforcement Learning: Achieving Near-Optimal Regret With Posterior Sampling

Danil Provodin · Maurits Kaptein · Mykola Pechenizkiy

Hall C 4-9

[Abstract] Wed 24 Jul 1:30 p.m. CEST - 3 p.m. CEST (Bookmark)

Open for Collaboration

Excited to explore new collaboration opportunities. If you're interested in working together, please feel free to reach out.

Contact: d.provodin@tue.nl LinkedIn: linkedin.com/in/danil-provodin/

Why average-reward criterion?

- Discounted MDPs are ubiquitous in RL
	- Sometimes discount factor γ is inherent part of the problem
	- Or a problem has a small horizon
- Often we care about long-term performance (infinite horizon)
	- ν becomes part of the solution method, artificial discounting

Examining average and discounted reward optimality criteria in reinforcement learning

Comparison to the existing literature

Empirical regret

Efficient Exploration in Average-Reward Constrained RL: 31 EINCRITE EXPLOTATION IN AVERAGE-NEWALD CONSUMING NE.
Achieving Near-Optimal Regret With Posterior Sampling

