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1 Comparison of Masked Video Autoencoders

(1) Agnostic (2) Space-only

v' Recently proposed Masked Video Autoencoders
reconstruct randomly masked spatiotemporal
regions in video clips.

v' However, tokens (a pair of two temporally
successive patches in the same space) in videos
are not equally valuable to reconstruct.

v' Moreover, learning representations from videos
is infeasible without a huge computing budget.

Method PT-Time Memory
VideoMAE (Tong et al., 2022) 18m 42s 150.3 GB
MME (Sun et al., 2023) 1I0m 15s 121.2 GB
MVD (Wang et al., 2023c¢) 5Im 55s 2749 GB
EVEREST (Ours) 8m 18s 66.3 GB

v" We propose Redundancy-robust token
selection, an efficient VRL method that promptly
selects the most informative tokens based on
the states’ change and discards redundant
ones in an online manner, avoiding wasteful
training on uninformative regions of videos.

v" We further propose information-intensive
frame selection, a strategy to select

informative video frames from incoming videos,

which allows the model to efficiently learn
robust and diverse temporal representations
In real-world uncurated videos.
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Our ReRo mask generator selects tokens with a large disparity with the paired ones in the
previous time dimension, indicating that they include rich motion features. Then, the model
focuses on learning representation by reconstructing only sparsified videos containing
abundant spatiotemporal information, which makes the VRL surprisingly efficient.

O On-the-fly Information-intensive Frame Selection

Sampling

while avoiding redundant frames.

We adaptively select frames based on the ReRo token frequency,
which indicates significance compared to the other frames. Our
frame selection method is crucial to better capture causality in
the arrival video, as the model can observe longer video fragments
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7 Pre-training Fine-tuning %
VideoMAE  EVEREST (ours) VideoMAE EVEREST (ours) 128 256 512 , 1024
Batch size
Method Backbone PT-Data PT-GFLOPs FT-GFLOPs Memory usage (GB) Top-1 Acc
MVIT (Fan et al., 2021)f MViT-S X 32.9 76.0
MVIT (Fan et al., 2021)f MViT-B X - 70.5 - 78.4
ViViT FE (Arnab et al., 2021) ViT-L IN-21K  119.0% 3980.0 N/A 81.7
K-centered (Park et al., 2022) XViT IN-1IK  67.4% 425.0 N/A 73.1
K-centered (Park et al., 2022) Mformer IN-1IK  67.4% 369.5 N/A 74.9
K-centered (Park et al,, 2022)  TSformer IN-1K  67.4% 590.0 N/A 78.0
VideoMAE (Tong et al., 2022) ViT-S K400 11.6 57.0 117.4 73.5
VideoMAE (Tong et al., 2022) ViT-B K400 355 180.5 486.4 78.4
VideoMAE (Tong et al., 2022) ViT-L K400  83.1 597.2 634.1 82.0
EVEREST (Ours) ViT-S K400 6.3 45.7%) 29.1(] 48.9%) 59.9 (| 49.0%) 75.9
EVEREST (Ours) ViT-B K400 21.5(1 39.4%) 98.1 (] 45.7%) 91.2 ({ 81.3%) 79.2
EVEREST (Ours) ViT-L K400 60.8 (| 26.8%) 330.0 (| 44.7%) 164.1(] 74.1%) 82.1

1 EVEREST-Finetuning with other MVAs on K400

PT-Method FI-Method GFLOPs Memory Top-1

VideoMAE  Full-token 180.5 362.5GB  81.5

VideoMAE EVEREST 98.1 1784 GB  81.6
MME Full-token 180.5 362.5GB  81.8
MME EVEREST 98.1 1784 GB  82.0
MVD Full-token 180.5 3625GB 834
MVD EVEREST 98.1 1784 GB  82.8

Conclusion

v" From the insight that not all video tokens are
equally informative, we propose a simple yet
efficient parameter-free token and frame
selection method for video pre-training.

v" We empirically demonstrate that our method is
significantly more efficient in computations,
memory, and training time than strong baselines.




