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Reinforcement Learning from human 
feedback

Q: Is it legal to 
edit Linux 
Kernel?

1. No, it violates 
the licensing 

agreement
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the modified …
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Input Prompt

1. SFT - Finetune base LLM on human-written responses to create SFT model

2. Reward Model - Train a reward model based on human ranking of SFT model outputs

Human ranks 
responses

Generated 
responses



The RL stage of PPO-RLHF
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Update policy based on rewards of generated outputs

Maximize reward - The generated outputs should have high reward as decided by the reward 
model
• Train the policy to maximize the reward    

Avoid catastrophic forgetting – The policy shouldn’t deviate too much from the SFT model
• Minimize divergence between the policy and the SFT model.



Idea 1 – Use Bayes’ rule to obtain target
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Prior probability of 
generating 𝑦 given 

𝑥

Likelihood – Probability that the 
output 𝑦 is good for 𝑥

(under certain assumptions)

Posterior: Given that we want good outputs, 
the probability of generating 𝑦 for 𝑥

The normalization constant is intractable. Direct sampling is infeasible. 
Train an LLM to mimic the posterior



Amortized Inference - Ideal

• Train an LLM to mimic the posterior.
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Amortized Inference with importance weights
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Idea 2 - Variance reduction with a self-
normalized baseline
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How important is baseline?



DPO, BRAIn & Distribution Matching



Performance comparison

Significantly outperforms DPO and RSO on AnthropicHH and Reddit TL;DR



From DPO to BRAIn



GPT-4 evaluation (Head-to-Head)

https://arxiv.org/pdf/2402.02479.pdf



Fewer samples per prompt



Conclusions

• Bayesian posterior can be an effective choice for the target 
distribution in RLHF
• It accounts for the reward modelling assumptions made.

• Variance reduction is key for distribution matching to be effective.
• A self-normalized baseline results in reduced variance.

• The DPO loss can be derived a special case of distribution 
matching with a self-normalized baseline, aka, BRAIN


