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Reinforcement Learning from human
feedback

1. SFT - Finetune base LLM on human-written responses to create SFT model
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2. Reward Model - Train a reward model based on human ranking of SFT model outputs
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The RL stage of PPO-RLHF
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Update policy based on rewards of generated outputs

Maximize reward - The generated outputs should have high reward as decided by the reward
model
e Train the policy to maximize the reward

Avoid catastrophic forgetting — The policy shouldn’t deviate too much from the SFT model
* Minimize divergence between the policy and the SFT model.



ldea 1 — Use Bayes’ rule to obtain target

(x,y) Likelihood — Probability that the
output y is good for x

(under certain assumptions)

Prior probability of

generating y given
X

p(lx,G =1) «  pyIx) X exp(r(x,y))

X

Posterior: Given that we want good outputs,
the probability of generating y for x

The normalization constant is intractable. Direct sampling is infeasible.
Train an LLM to mimic the posterior



Amortized Inference - ldeal

* Train an LLM to mimic the posterior.

Posterior

pr(y|x)

B4t
Y2

Yn

Policy

qo (¥]x)

Train the policy
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Amortized Inference with importance weights
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Policy
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policy
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ldea 2 - Variance reduction with a self-
normalized baseline
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How important is baseline?

1.4
BRAIn w/o self-norm w/o baseline 1.2
TL;DR 95.2 61.4 61.1
AnthropicHH 95.4 59.1 58.3 1.0
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DPO, BRAIn & Distribution Matching

* Self-normalize
importance weights

Gradient

™ (a; — B) Vg log o (yi]x)

* Sample only 2
outputs from base

* Self-normalize
baseline

BRAIn

(sft) policy
* binarize & values

Gradient
GDC: Yi;a;Vglogpe(yilx)
GDC++:
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Performance comparison

AnthropicHH - Train RM AnthropicHH - LLM eval
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Significantly outperforms DPO and RSO on AnthropicHH and Reddit TL;DR



From DPO to BRAIn
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GPT-4 evaluation (Head-to-Head)

AnthropicHH Comparison Reddit TL;DR Comparison
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https://arxiv.org/pdf/2402.02479.pdf



Fewer samples per prompt
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Figure 2: Plot of Win-rate Against Gold as a function of the
Number of Samples per Prompt.



Conclusions

* Bayesian posterior can be an effective choice for the target
distribution in RLHF

* [t accounts for the reward modelling assumptions made.

* Variance reduction is key for distribution matching to be effective.
A self-normalized baseline results in reduced variance.

* The DPO loss can be derived a special case of distribution
matching with a self-normalized baseline, aka, BRAIN



