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« Complex robotics manipulation tasks such as desktop tidying often span over long horizons and encaps- ¢ We conduct experiments on various benchmarks to answer the following questions: 1) Can KISA achieve

ulate multiple sub-tasks separated by keyframes. Directly learning from long-horizon demonstrations in better accuracy and interpretable skill alignment compared to other competitive baselines? 2) Does
an end-to-end manner Is challenging. KISA exhibit robust zero-shot generalization across objects, compositional tasks, and cross-embodiments?
 Hierarchical policy learning, by decomposing a complex demonstration into several shorter subtasks to 3) Is KISA a flexible framework for incorporating pretrained robotics representations?
facilitate the reusable skills and further enable modular skill composition for generalization. However, > The Accuracy of Keyframes and Skills Annotation _
obtaining demonstrations with explicit keyframe boundaries and skill annotations is difficult, especially Maniskill CALVIN FrankaKitchen
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for real-world human videos.
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------ Task: keﬂle-bo;rom_bumer-lighf_swifch-slic_i;:::abinef
K1. Move Kettle to top left Burner; K2. Activate the bottom Burner; K3. Turn on Light Switch; K4.Open Slide Cabinet
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> Relying solely on frame-level visual representations would induce training confusion for aligning them to

distinct skills. So we propose a simple yet effective temporal-enhanced module on top of pretrained visual > Visualization of Keyframe ldentitication
represe ntation S Task: Push Block Right->Open Drawer->Push into Drawer->Slider Door Right->Lift Block from Drawer
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» History-aware Contrastive Training
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> we additionally fine-grained monotonic alignment to encourage the capture of skill-aware progress g i .
within the sub-task, and prevent representation collapse to highly similarity within the same skill. I L N N
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Incorrect Skill Misalignments Disjoint Frame-History Compositions Semantic Reversals via Video Inversion
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