Preference Optimization for Molecule Synthesis with Conditional Residual Energy-based Models

ICML 2024 (Oral)

Songtao Liu1 , Hanjun Dai2, Yue Zhao3, Peng Liu1 Contact: Songtao Liu (skl5761@psu.edu) ¹Penn State, ²Google DeepMind, ³University of Southern California

1. Molecule Synthesis (Retrosynthetic Planning)

Background: Retrosynthesis Prediction

Given a target product molecule the goal of one-step retrosynthesis is to predict a set of reactants that can react to synthesize this product.

Background: Retrosynthetic Planning

Given a target molecule, the goal of retrosynthetic planning is to search for the starting materials that can synthesize the target molecule through a set of chemical reactions

A

2. Probabilistic View of Retrosynthetic Planning

Markov Chain in Retrosynthetic Planning

FusionRetro: An Autoregressive Model for Retrosynthetic Planning

Cl

Cl

N O

NH2

[1] exploits previous molecules as context to generate the next reactant set, which can improve the performance of singe-step retrosynthesis prediction.

N O-

O

O N+

Cl

O-O N+

+

NH

[1] FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning, 2023 ICML

One-Step Retrosynthesis Models can't Generate Routes with Desired Quality **Abstract** Hendrickson's definition of the "ideal synthesis" serves as a benchmark to assessment of the convergence of the contract of the contract in convergence in contract i

Each step in the retrosynthesis planning is locally normalized. i.e. $\sum_{\mathcal{R}} P(\mathcal{R}|m_p, \cdot) = 1, m_p$ is the product and $\mathcal R$ is the reactant set. Preference Optimization for Molecule Synthesis with Conditions and Conditions are also conditions and a synthe

Any ranking of plans for the synthesis of a given target compound depends on benchmarks which must be defined. Possible criteria may be

- the shortest route (time involved),
- *•* the cheapest route (cost of materials),
- the novelty of the route (patentability),
- the greenest route (avoidance of problematic waste),
- *•* the healthiest route (avoidance of toxic intermediates and side products),
- the most reliable route (lowest risk approach).

This step-by-step generation process often fails $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$ to account for criteria primarily because it relies on pure probability (local normalization) for $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$ group management steps count in addition of the steps count in addi predicting routes without forward-thinking.

Figure 2. For a given target molecule, we find two synthetic routes that can synthesize it in the dataset.

3. Conditional Residual Energybased Models for Controllable Synthetic Route Generation

Energy Function for Evaluating the Quality of Synthetic Routes the form a new probability is the property of the property of

$p_{\theta}(\mathcal{T}) \propto \exp\left(\log P_{Retro}(\mathcal{T}) - E_{\theta}(\mathcal{T})\right)$

By introducing $E_{\theta}(T)$, we can consider various criteria and incorporate additional properties encoded within $E_{\theta}(\mathcal{T})$, which is defined on the synthetic route, allowing for route evaluation based on various criteria.

Energy-based Models (discrete space) Energy hoged Mo $\mathbb{E}[\mathbf{$

ergy-based models define the distribution via an energy function. For $x \in$ $^{\prime}$, its probabil Energy-based models define the distribution via an energy function. For $x \in$ \mathbb{R}^D , its probability density can be expressed as:

$$
P_{\theta}(x) = \frac{\exp(-E_{\theta}(x))}{Z(\theta)},
$$

where $Z(\Theta) = \int \exp(-E_{\Theta}(x))$ is the normalization constant.

The target molecule is represented by *mtar* 2 *M\S*. The

x expect distribution ypically, we use NCE loss function to approximate the target distribution. Typically, we use NCE loss function to approximate the target distribution.

$$
\mathcal{L} = -\mathbb{E}_{x \sim P_{\text{data}}} \left[\log \sigma \left(-E_{\Theta}(x) \right) \right] - \mathbb{E}_{\tilde{x} \sim P_{\text{noise}}} \left[\log(1 - \sigma \left(-E_{\Theta}(\tilde{x}) \right) \right) \right]
$$

Residual Energy-based Models Residual Energy-based Models.

Residual Energy-based Models[3]: $\sum_{i=1}^{n} a_i$

$$
P_{\theta}(x) \propto P_{LM}(x) \exp(-E_{\theta}(x))
$$

 $P_{LM}(x)$ is a locally normalized model. By incorporating the energy function, $P_{\theta}(x)$ can approximate the target distribution better. $P_{\theta}(x)$ can approximate the target distribution better.

$$
\mathcal{L} = \mathbb{E}_{x \sim P_{data}} \left[\log \frac{1}{1 + \exp(E_{\theta}(x))} \right] + \mathbb{E}_{\tilde{x} \sim P_{LM}} \left[\log \frac{1}{1 + \exp(-E_{\theta}(\tilde{x}))} \right]
$$

[3] Residual Energy-based Models for Text Generation, 2020 ICLR [3] Residual Energy-based Models for Text Generation, 2020 ICLR

Conditional Residual Energy-based Models ^X*^P* (*R | ^mp*)=1*,* (13) l Regidual Fnergy-hase s routed run gy vaser

a new probabilistic model. This formulates our method as a

$$
P_{\theta}(\mathcal{T} \mid m_{tar}, c)
$$

= $P_{Retro}(\mathcal{T} \mid m_{tar}) \frac{\exp(-E_{\theta}(\mathcal{T} \mid m_{tar}, c))}{Z_{\theta}(m_{tar}, c)}$

$$
\propto P_{Retro}(\mathcal{T} \mid m_{tar}) \exp(-E_{\theta}(\mathcal{T} \mid m_{tar}, c)),
$$

 $P_{Retro}(\mathcal{T}|m_{tar})$ is a base model, c denotes specific criteria (condition), E_{Θ} is the conditional residual energy function for evaluating the quality given c. During the training of our energy function E_{Θ} , $P_{Retro}(\mathcal{T}|m_{tar})$ is fixed. Therefore, our CREBM is a post-training method and can be applied on top of any $P_{Retro}(\mathcal{T}|m_{tar})$. $P_{\text{Ratms}}(T | m_{\text{tan}})$ is a base model, c denotes specific criteria (com where *x*¹ denotes the *x*¹ **buring the train** s a base model, *c* denotes specific criteria (con g of our energy function E_{Θ} , $P_{Retro}(\mathcal{T}|m_{tar})$ R FRM is a nost-training method and can be an given *c*. During the training of our energy function *E*✓, *PRetari* (*T m*^{*t*} *<i>m*^{*n*} *nn*^{*n*} *is a <i>m*^{*n*} *nn***^{***n***}** *is a <i>m is a <i>m n*

How to Train Our CREBM s*.*t*.* ' (*T*¹ *| mtar, c*) *>* ' (*T*² *| mtar, c*)*,* 21 where $\overline{}$ is the ground truth reward function. $\overline{}$

means ' (*T*¹ *| mtar, c*) *>* ' (*T*² *| mtar, c*), and *T*¹ is pre-

the Tanimoto similarity function. Note that the Tanimoto

$$
\mathcal{L} = -\mathbb{E} \left[\log \sigma \left(-E_{\theta} \left(\mathcal{T}_{w} \mid m_{tar}, c \right) + E_{\theta} \left(\mathcal{T}_{l} \mid m_{tar}, c \right) \right) \right]
$$

s.t. $(m_{tar}, \mathcal{T}_{w}, \mathcal{T}_{l}) \sim \mathcal{D}$,

where is the sigmoid function and ' (*T^w | mtar, c*) *>* By using this loss function, we can prefer the synthetic routes with higher \overline{A} and \overline{A} the training, our energy function can be training, our energy function can be training. desired quality (lower energy). The sigmoid function can output the value between 0 and 1, which is indeed probability.

How to Train Our CREBM ow to Train Our CREBI means ' (*T*¹ *| mtar, c*) *>* ' (*T*² *| mtar, c*), and *T*¹ is pre- $H_{\alpha W}$ to Train Ω_{W} CRERM HOW W FIGHT OUT CREDIVI IOW TO Train Our CREBIVI

successes of alignment algorithm (α alignment algorithms (α) algorithms (α) and α) and α

emphasis comes from the necessity for machine learning from the necessity for α

similarity function provides a measure of similarity between \mathcal{S}

research. Therefore, we design a heuristic reward function

$$
\mathcal{L} = -\mathbb{E} \left[\log \sigma \left(-E_{\theta} \left(\mathcal{T}_{w} \mid m_{tar}, c \right) + E_{\theta} \left(\mathcal{T}_{l} \mid m_{tar}, c \right) \right) \right]
$$

s.t. $(m_{tar}, \mathcal{T}_{w}, \mathcal{T}_{l}) \sim \mathcal{D}$,

ferred than *T*2. Thus, the loss function for our model is

synthetic preference dataset \overline{D} . The preference is constructed by the following reward function for evaluating the quality of synthetic routes: $\mathbf{h}_{\mathbf{P}}$ $\overline{}$ We use one base model for sampling synthetic routes to construct our \mathbf{S} : *mtar* and *V* 2 R is a scalar value. The higher the value molecule. Sometimes a new synthetic route can be obtained the can be obtained the can be obtained the can be o
Sometimes a new synthetic route can be obtained the can be obtained the can be obtained the can be obtained th

$$
\varphi\left(\cdot\mid m_{tar},c\right):\mathcal{X}_{tar}\rightarrow\mathcal{V},
$$

X we focus on the feasibility of generated synthetic route *m* and the *m m reasionity* or generated symmetre for reasons of the reasons of generated symmetre for $V = \frac{V}{V} \left(\frac{\mathcal{T}}{V} \right) \left(\frac{\mathcal{T}}{V} \right) \left(\frac{\mathcal{T}}{V} \right) = \lim_{\alpha \to \infty} \left(\frac{f(\mathcal{R})}{V} \right) \left(\frac{\mathcal{T}}{V} \right) \left(\frac{\mathcal{T}}{V} \right)$ be executed in the wet lab before considering other criteria. $\mathbf{w} \in$ In this work, we focus on the feasibility of generated synthetic routes. We implement reward function as exp (⇤ (*T*¹ *| mtar, c*)) + exp (⇤ (*T*² *| mtar, c*)) o room on the romanding or generators

$$
\varphi(\mathcal{T} \mid m_{tar}, c) = \text{sim} (f(\mathcal{B}), m_{tar}) + \text{sim} (\mathcal{B}, \mathcal{B}_{ref}),
$$

CREBM Framework

Algorithm 1 CREBM Framework

- 1: [Train Phase]: Learning:
- 2: Define reward function φ (\cdot | m_{tar} , c) as Eq. (16)
- 3: φ (*·* | m_{tar} , *c*) : $\mathcal{X}_{tar} \rightarrow \mathcal{V}$
- 4: Rank synthetic routes $\mathcal{X}_{tar} \sim P_{Retro}$ based on φ
- 5: Train Conditional Residual Energy-based Models:
- 6: $\theta^* = \arg \min_{\theta} \mathcal{L} = \arg \max_{\theta} \mathbb{E}_{(m_{tar}, \mathcal{T}_{w}, \mathcal{T}_{l}) \sim \mathcal{D}}$
- 7: [Test Phase]: Inference:
- 8: **Input**: θ^* , m_{tar} , Proposal $\mathcal{X}_{tar} \sim P_{Retro}$ (*·* | m_{tar}).
- 9: $L \leftarrow -\log P_{Retro}(\mathcal{T} \mid m_{tar}) + E_{\theta}(\mathcal{T} \mid m_{tar}, c)$
- 10: $\mathcal{T}^* = \arg \min_{\mathcal{T} \in \mathcal{X}_{tar}} L$
- 11: **Return** \mathcal{T}^*

Results

material set and the reference to evaluate the feasibility. In this work, we use the set-wise match between the predicted starting

Table 1. Summary of retrosynthetic planning results in terms of exact match accuracy (%). Our framework (CREBM) can consistently improve the performance of existing strategies.

Results FusionRetro (Liu et al., 2023b) 37.5 45.0 48.2 50.0 50.9 37.5 45.0 48.3 50.2 51.2 33.8

Table 2. Summary of results with our CREBM in terms of top-1 accuracy (%) on routes of different depths.

Ablation Study Preference Optimization for Molecule Synthesis with Conditional Residual Energy-based Models

Table 3. Ablation study on our energy function.

Ⅰ

Preference Visualization

Code & arXiv

Code: https://github.com/SongtaoLiu0823/CREBM arXiv: https://arxiv.org/pdf/2406.02066

Q&A

Thank you! And any question?