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1. Molecule Synthesis 
(Retrosynthetic Planning)



Background: Retrosynthesis Prediction
Given a target product molecule the goal of one-step retrosynthesis is to 
predict a set of reactants that can react to synthesize this product.
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Background: Retrosynthetic Planning
Given a target molecule, the goal of retrosynthetic planning is to search for 
the starting materials that can synthesize the target molecule through a set 
of chemical reactions 
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Background: Synthetic Route Generation
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Background: Synthetic Route Generation
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Background: Synthetic Route Generation
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Background: Synthetic Route Generation
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Background: Synthetic Route Generation
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Background: Synthetic Route Generation
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Background: Synthetic Route Generation
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2. Probabilistic View of 
Retrosynthetic Planning



Markov Chain in Retrosynthetic Planning
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FusionRetro: An Autoregressive Model for 
Retrosynthetic Planning

[1] exploits previous molecules as 
context to generate the next 
reactant set, which can improve 
the performance of singe-step 
retrosynthesis prediction.

Autoregressive 
Retrosynthetic 

Planning Model
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[1] FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning, 2023 ICML



One-Step Retrosynthesis Models can’t 
Generate Routes with Desired Quality

Each step in the retrosynthesis 
planning is locally normalized.
i.e. ∑ℛ 𝑃 ℛ|𝑚",⋅ = 1, 𝑚" is 
the product and ℛ is the 
reactant set.

Chapter 8
Ranking of Synthesis Plans

Abstract Hendrickson’s definition of the “ideal synthesis” serves as a benchmark to
assess synthesis plans. Criteria such as convergency, increase in complexity, and ro-
bustness are presented to rank synthesis plans and to pinpoint weaknesses therein.

Any ranking of plans for the synthesis of a given target compound depends
on benchmarks which must be defined. Possible criteria may be

• the shortest route (time involved),
• the cheapest route (cost of materials),
• the novelty of the route (patentability),
• the greenest route (avoidance of problematic waste),
• the healthiest route (avoidance of toxic intermediates and side products),
• the most reliable route (lowest risk approach).

Aside from these external criteria, ranking of synthesis proposals could
also follow systematic criteria, e.g., the step count. A synthesis that reaches
the target in fewer steps than another one is considered superior. Every syn-
thesis consists of obligatory steps, i.e., those by which the skeleton is made.
When focusing on this aspect, the bond-set would give a lower limit to the
number of steps involved in a projected synthesis, because any refunction-
alization steps and protecting group management steps count in addition
to the skeleton forming steps. Because of this, the bond-set does not re-
veal too much about a step count and the quality of a projected synthesis.
For instance, the differences between the bond-sets of Woodward’s [1] and
Muxfeldt’s [2] tetracycline syntheses are minimal (Scheme 8.1). Comparison
of the bond-sets does not reveal that in Muxfeldt’s synthesis three bonds are
formed in one operation rendering this synthesis significantly shorter—22
steps in Woodward’s synthesis versus 17 in Muxfeldt’s.

R.W. Hoffmann, Elements of Synthesis Planning, 133
DOI 10.1007/978-3-540-79220-8 8, c⃝ Springer-Verlag Berlin Heidelberg 2009

This step-by-step generation process often fails 
to account for criteria primarily because it relies 
on pure probability (local normalization) for 
predicting routes without forward-thinking.

Preference Optimization for Molecule Synthesis with Conditional Residual Energy-based Models

the reactants graph, and Gs denotes the synthons graph.
P (R | mp) incorporates the combined probabilities of ac-
tions in both E and A spaces. In the first stage, we predict
the reaction centers, based on which we disconnect the prod-
uct molecule graph. We use a binary label yb 2 {0, 1}
for each bond b 2 Ep in the product molecule graph Gp,
which indicates whether the bond is a reaction center. So
the prediction of the reaction centers can be formulated as

P (E | Gp) =
Y

b2Ep

P (yb|Gp). (11)

It follows that
PQ

b2Ep
P (yb | Gp) = 1. Note that in

G2Gs, the center identification is treated as a multi-class
classification problem, where P (E | Gp) = 1. In the
second stage, we transform synthons into valid molecules.
GraphRetro (Somnath et al., 2021) attaches leaving groups
with

P (A | Gp,Gs) =
Y

s2S

P (qls | Gp,Gs) , (12)

where S is the number of connected components (synthons)
and the leaving group qls is selected from a pre-computed
vocabulary from the training dataset. Therefore, we havePQ

s2S P (qls | Gp,Gs) = 1. G2Gs modifies the second
stage by replacing the attachment of a leaving group with
a sequential attachment of multiple atoms, which is not
difficult to demonstrate that P (A | Gp,Gs) = 1. WithP

P (A | Gp,Gs) = 1 and
P

P (E | Gp) = 1, it is evident
that each stage of the two-stage model operates with local
normalization. Based on the conclusion that any model that
is locally normalized is also globally normalized (Variani
et al., 2022). We can conclude

X
P (R | mp) = 1, (13)

and these two semi-template-based models are also locally
normalized in retrosynthetic planning.

Template-free Model. Template-free models often ap-
proach retrosynthesis as a sequence-to-sequence task by
representing molecules with SMILES string.

P (R | mp) =
TY

t=1

P (xt | Xp, x1, x2, · · · , xt�1) , (14)

where xt denotes the t-th token in SMILES string of re-
actants and Xp is the SMILES string of product. Obvi-
ously, we have

P
P (xt | Xp, x1, x2, · · · , xt�1) = 1 and

template-free models are also locally normalized.

For more retrosynthesis models, readers are encouraged to
check their implementation and can find that the softmax
function is applied to the probability scores of the predicted
candidate reactant sets associated with the product. There-
fore, the discrete generation nature in retrosynthesis predic-
tion ensures the retrosynthesis model is locally normalized
during retrosynthetic planning.
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Figure 2. For a given target molecule, we find two synthetic routes
that can synthesize it in the dataset.

As discussed before, locally normalized models operate on
the molecule instead of the whole synthetic route. This
step-by-step generation process often fails to account for
long-range factors, primarily because it relies on pure proba-
bility for predicting routes without forward-thinking various
criteria such as starting material costs and the feasibility of
synthetic routes. In this work, we propose a general and
principled framework via conditional residual energy-based
models to improve the quality of synthetic routes.

3.3. Conditional Residual Energy-based Models

EBMs offer compositionality (Du et al., 2020; 2021; 2023),
enabling the integration of extra energy functions to evaluate
synthetic routes based on multiple criteria and thus develop
a new probabilistic model. This formulates our method as a
conditional residual EBM (Deng et al., 2020).

P✓ (T | mtar, c)

= PRetro (T | mtar)
exp (�E✓ (T | mtar, c))

Z✓ (mtar, c)

/ PRetro (T | mtar) exp (�E✓ (T | mtar, c)) ,

(15)

where PRetro (T | mtar) is a strategy via the combination
of the retrosynthesis model and search algorithm, c de-
notes specific criteria (condition), Z✓ (mtar, c) is a normal-
izing factor, P✓ is the joint model, and E✓ is the condi-
tional residual energy function for evaluating the quality
given c. During the training of our energy function E✓,
PRetro (T | mtar) is fixed. Therefore, our approach is a
post-training method, freezing the base model when train-
ing additional components, and can be applied on top of
any existing strategy, while its black-box nature makes it
convenient to adopt. With such CREBM, we aim to improve
the quality of the most probable synthetic routes, those with
higher likelihoods, generated by existing strategies to meet
specific criteria and achieve controllable generation.

5



3. Conditional Residual Energy-
based Models for Controllable 

Synthetic Route Generation



Energy Function for Evaluating the Quality 
of Synthetic Routes

Preference Optimization for Molecule Synthesis with Conditional Residual Energy-based Models

of the strategy’s performance.

While we recognize the significance of these criteria like the
cost of starting materials, the step count, and whether the
predicted synthetic routes are feasible, these crucial aspects
are currently not incorporated into the predictions made
by existing strategies. The generation of synthetic routes
is guided by a product of conditional probabilities, each
corresponding to a retrosynthesis prediction, where local
normalization is applied. These strategies, while general,
fail to adequately consider the above criteria and also suffer
from the limitations of local normalization. A notable issue
in local normalization is the exposure bias, a discrepancy
that arises because, at training time, the model is conditioned
on the actual synthetic route, whereas at test time, it depends
on its own predictions (Ranzato et al., 2016; Deng et al.,
2020).

Although advanced search algorithms like beam search
(Retro*-0), MCTS (Segler et al., 2018), and Retro* (Chen
et al., 2020) provide some improvement through the use
of retrosynthesis prediction probability as a prior and by
rescoring at the level of the entire synthetic route, the gener-
ation process that one step at a time still tends to lack long-
range consideration. This shortcoming is mainly due to the
reliance on pure probability for route prediction, without
considering the cost and feasibility of starting materials in a
forward-looking way. A similar issue also arises in recent
large language models (Brown et al., 2020; Touvron et al.,
2023). Without alignment (Ouyang et al., 2022; Rafailov
et al., 2023), relying solely on the highest probability for
response generation can lead to unsafe outputs. Incorporat-
ing alignment helps steer the generated content to conform
to certain standards, improving safety. Moreover, some
works (Tripp et al., 2022; Genheden & Bjerrum, 2022; Liu
et al., 2023b; Tripp et al., 2024) report very little perfor-
mance difference among some different search algorithms.
Based on our investigation, we find it non-trivial to extend
or retrofit existing strategies to include those criteria.

The above discussion raises an essential question: Is it pos-
sible to improve the quality of synthetic routes generated
by various strategies? We start with an existing probabilis-
tic model PRetro(T ), which integrates a one-step retrosyn-
thesis model with a search algorithm as one strategy and
wants to improve the quality of synthetic routes. Energy-
based models (Hinton, 2002; LeCun et al., 2006; Ranzato
et al., 2007; Xie et al., 2016; Grathwohl et al., 2019; Sun
et al., 2021) provide compositionality (Du et al., 2020; 2021;
2023), which means we can add up multiple energy func-
tions to form a new probabilistic model that has the property
of each component. Specifically, we want something like

p✓(T ) / exp (logPRetro(T )� E✓(T )) . (1)

By introducing E✓(T ), we can incorporate additional prop-
erties encoded within E✓(T ), which is defined on the syn-

thetic route, allowing for route evaluation based on various
criteria. This allows us to reformulate our approach as a
residual EBM (Deng et al., 2020) and focus on training
E✓(T ) exclusively. Note that our introduced framework di-
rectly operates on top of any strategy PRetro without touch-
ing its training and our framework differs from Sun et al.
(2021), as our energy function is based on specific criteria,
whereas theirs is based on reaction prediction probability.
Therefore, our model P✓(T ) can be guided by the energy
function E✓(T ), enabling controllable synthetic route gen-
eration based on various criteria.

It is challenging to directly train our EBM via Maximum
Likelihood Estimation (MLE) or score matching (Song &
Kingma, 2021) due to the difficulty in computing the nor-
malization term. A commonly used framework based on the
contrastive divergence (Carreira-Perpinan & Hinton, 2005)
requires the samples from the current model, either using
gradient-based Markov Chain Monte Carlo methods (Du &
Mordatch, 2019) in continuous spaces or Gibbs sampling
and its improved versions (Sun et al., 2023) in discrete
spaces. However, for the large space of synthetic routes,
these methods would be hard to apply due to their slow
convergence and difficulty in sampling. Noise Contrastive
Estimation (NCE) (Gutmann & Hyvärinen, 2010; Wang
& Ou, 2018; Parshakova et al., 2019) provides an easier
way to train the EBM when the ground-truth data is avail-
able. However in our setting, we typically don’t have the
ground-truth synthetic routes as the supervision, but we can
possibly get the preference comparisons between different
routes. That motivates us to derive a new training paradigm
that fits the application in this setting. Inspired by the recent
advancements (Ouyang et al., 2022) in large language mod-
els (LLMs) that leverage reward models to steer pre-trained
language models, we have the potential to derive compara-
tive preferences among different routes tailored to particular
criteria. Therefore, we utilize a preference-based loss func-
tion for training our model. Given that open-source datasets
lack information on yield rates and starting material costs,
we use the feasibility of the synthetic routes as our criteria to
implement our EBM. Extensive experimental results show
our proposed framework can consistently improve the per-
formance of predictions made by a wide range of strategies.
Our contribution can be summarized as follows:

• We explain retrosynthetic planning through the lens of
probability and find that local normalization is present
at each planning step. This insight also bridges retrosyn-
thetic planning with sequence generation in LLMs, uncov-
ering certain challenges inherent in retrosynthetic plan-
ning (Section 3.1, 3.2).

• Based on this new view, we propose a general and princi-
pled framework that can improve the quality of synthetic
routes generated by various strategies in a plug-and-play

2

By introducing 𝐸# 𝒯 , we can consider various criteria and incorporate 
additional properties encoded within 𝐸# 𝒯 , which is defined on the 
synthetic route, allowing for route evaluation based on various criteria. 



Energy-based Models (discrete space)
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Figure 1. Illustration of a synthetic route. The target molecule we aim to synthesize is the one located on the extreme left, while the
molecules positioned at the leaf nodes are the starting materials. The remaining molecules in the diagram are intermediates.

manner (Section 3.3).

• Our work can inspire future research in developing more
advanced datasets that consider a broader range of crite-
ria and leverage controllable generation techniques for
molecule synthesis (Section 3.3).

• Extensive experimental results demonstrate the effective-
ness of our proposed framework, which can increase
previous state-of-the-art top-1 accuracy by 2.5% (Sec-
tion 4.2).

2. Preliminary
In this section, we describe some foundational concepts
such as synthetic route and introduce the problem.

2.1. Synthetic Route

The chemical molecule space is denoted by M. Starting ma-
terials, defined as commercially available molecules, form
a subset of M and are represented by S ⇢ M. Note that
the term “building block” in some literature refers to what
we consider starting material. As illustrated in Figure 1, a
synthetic route comprises a tuple with four elements:

T = (mtar, ⌧, I,B) . (2)

The target molecule is represented by mtar 2 M\S. The
starting materials, denoted by B ✓ S, undergo a series
of reactions ⌧ to synthesize mtar. The intermediates are
marked as I ✓ M\S .

2.2. Reaction & One-step Retrosynthesis

We use one injection to denote a one-step reaction as

� : R ! mp. (3)

For a product molecule mp, and a set of reactants R =n
m(j)

r

on

j=1
✓ M capable of synthesizing mp, with

�(R) = mp, we focus on the main product despite po-
tential multiple byproducts in a reaction. The objective of
one-step retrosynthesis is to identify a reactant set R for

synthesizing mp. Given that multiple reactant sets may
achieve this, indicating a one-to-many relationship, we de-
fine  as the mapping from mp to its various reactant sets
R1,R2, . . . ,Rn, each capable of producing mp.

 : mp ! {R1,R2, . . . ,Rn} . (4)

Therefore, R 2 {R1,R2, . . . ,Rn} in Eq. (3). More details
about the difference between reaction and retrosynthesis
prediction can be found in Appendix A.

2.3. Retrosynthetic Planning

The goal of retrosynthetic planning is to find a series of
chemical reactions to transform the starting material set B 2
{B1,B2, · · · ,Bn} to a target molecule mtar 2 M\S . Cur-
rent strategies employ backward chaining, beginning with
the target molecule mtar and performing a series of one-step

retrosynthesis predictions
n
 (t)

i

oTi

t=1
(8i 2 {1, 2, · · · , n})

until all molecules at leaf nodes are from S, which can be
formulated as

� : mtar ! {T1, T2, · · · , Tn} , (5)

where � denotes the one-to-many mapping.

2.4. Energy-based Models

Energy-based models define the distribution via an energy
function. For x 2 RD, its probability density can be ex-
pressed as

P✓(x) =
exp (�E✓(x))

Z(✓)
, (6)

where E✓(x) : RD ! R is the energy function, mapping
the data point x to a scalar, and Z(✓) =

R
x exp (�E✓(x))

is the normalization constant. An EBM can be trained using
any function that receives data points as input and outputs a
scalar value.

3. Conditional Residual Energy-based Models
for Molecule Synthetic Route Generation

In this section, we discuss the details of our proposed frame-
work. We first provide a deep understanding of retrosyn-

3

where 𝑍 Θ = ∫exp −𝐸$ 𝑥 is the normalization constant.

Typically, we use NCE loss function to approximate the target distribution.

Energy-based models define the distribution via an energy function. For 𝑥 ∈
ℝ%, its probability density can be expressed as:

ℒ = −𝔼&∼(!"#" log𝜎 −𝐸$ 𝑥 − 𝔼 )&∼($%&'([log(1 − 𝜎(−𝐸$( A𝑥)))]



Residual Energy-based Models

𝑃*+ 𝑥 is a locally normalized model. By incorporating the energy function, 
𝑃# 𝑥 can approximate the target distribution better.

Residual Energy-based Models[3]:

[3] Residual Energy-based Models for Text Generation, 2020 ICLR

ℒ = 𝔼&∼()*+* log
1

1 + exp 𝐸# 𝑥
+ 𝔼 )&∼(,- log

1
1 + exp −𝐸# A𝑥

Published as a conference paper at ICLR 2020

perturbations of the ground truth would be efficient but hardly useful for generation purposes, when
at test time the model needs to generate from scratch.

Recently, Bakhtin et al. (2019) carefully studied the problem of training a discriminator to dis-
tinguish human written text from language model generations. They experimented with different
language model and discriminator architectures, training/test time corpora and concluded that the
discriminator can generalize rather well to weaker language models when the training/test corpora
match. Bakhtin et al. (2019) found that the learned discriminator is not robust to random perturba-
tions, and argued that the discriminator operates in the “residual” space of the language model.

Concurrently, Grover et al. (2019) proposed a general approach to “de-bias” a generator, by simply
training a discriminator and using its output for importance sampling.

In this work, we build upon these two works. First, we formalize the residual interpretation
by Bakhtin et al. (2019) and use a generative model of the form:

P✓(x) / PLM (x) exp(�E✓(x)) (1)

where PLM (x) is a locally normalized language model which is fixed during training, and E✓ is the
energy function parameterized by ✓. The resulting model P✓(x) is globally normalized due to the
energy term. Note that the same residual formulation was also used in Rosenfeld et al. (2001); Wang
& Ou (2018b); Parshakova et al. (2019).

This formulation has multi-fold benefits. First, by incorporating a locally normalized language
model, we can leverage recent advancements in locally normalized language modeling. Second,
the language model provides a natural proposal distribution for training (Bakhtin et al., 2019), and
training can be made efficient by using the conditional noise contrastive estimation objective (Gut-
mann & Hyvärinen, 2010) as we shall see in §3. Lastly, this formulation enables efficient evaluation
and generation via importance sampling (Horvitz & Thompson, 1952; Grover et al., 2019).

In some sense, this last point is perhaps the central contribution of the paper, as it allows estimating
perplexity of the residual EBM, and thus allows these EBMs to be compared in a standard way to
other models. Indeed, in §4 we show that our joint model decreases perplexity on two large datasets,
when compared to various auto-regressive language model baselines. Finally, the EBM generations
are significantly preferred by humans according to our qualitative evaluation. To the best of our
knowledge, this is the first time that an EBM has demonstrated improved generation ability against
very strong auto-regressive baselines, both in terms of estimated perplexity and through human
evaluation.

2 RELATED WORK

Energy-based models have a long history in machine learning (Hopfield, 1982; Hinton, 2002; LeCun
et al., 2006; Ranzato et al., 2007). The key challenge of training is mining for good negatives.
This can be accomplished explicitly by fantasizing inputs where the energy should be increased
or implicitly via global constraints such as sparsity (Ranzato et al., 2007). Methods attempting at
maximizing the likelihood of the data require to sample from the distribution induced by the model.
Unfortunately, gradient-based MCMC approaches like Hybrid Monte Carlo (Teh et al., 2003) and
Langevyn dynamics (Ranzato et al., 2007; Du & Mordatch, 2019; Xie et al., 2016; 2017; 2019;
2018; Gao et al., 2018; Nijkamp et al., 2019) are not applicable when the input is discrete like
in text applications. Other approaches like Gibbs sampling (Hinton, 2002) were applied to binary
inputs but do not scale well to large dictionaries once the energy function is a large bidirectional
transformer model like the one used in this work. Several variants of auto-encoders have also been
investigated for representing and generating text (Bowman et al., 2016; Zhao et al., 2018), but they
have not shown significant improvements in terms of perplexity and they have so far been applied to
relatively small datasets only.

Our approach appears similar to discriminative reranking approaches used in the parsing and ma-
chine translation community (Shen et al., 2004). However, our approach provides a generative
model, and parameters/hyper-parameters are directly tuned to close the gap between the model dis-
tribution and the data distribution, rather than relying on surrogate ranking losses. This approach is
also related to other sequence level training objectives (Edunov et al., 2018), with the major differ-

2



Conditional Residual Energy-based Models

𝑃,-./0(𝒯|𝑚.1/) is a base model, 𝑐 denotes specific criteria (condition), 𝐸$ is 
the conditional residual energy function for evaluating the quality given 𝑐. 
During the training of our energy function 𝐸$, 𝑃,-./0(𝒯|𝑚.1/) is fixed. 
Therefore, our CREBM is a post-training method and can be applied on top 
of any 𝑃,-./0 𝒯 𝑚.1/ . 
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the reactants graph, and Gs denotes the synthons graph.
P (R | mp) incorporates the combined probabilities of ac-
tions in both E and A spaces. In the first stage, we predict
the reaction centers, based on which we disconnect the prod-
uct molecule graph. We use a binary label yb 2 {0, 1}
for each bond b 2 Ep in the product molecule graph Gp,
which indicates whether the bond is a reaction center. So
the prediction of the reaction centers can be formulated as

P (E | Gp) =
Y

b2Ep

P (yb|Gp). (11)

It follows that
PQ

b2Ep
P (yb | Gp) = 1. Note that in

G2Gs, the center identification is treated as a multi-class
classification problem, where P (E | Gp) = 1. In the
second stage, we transform synthons into valid molecules.
GraphRetro (Somnath et al., 2021) attaches leaving groups
with

P (A | Gp,Gs) =
Y

s2S

P (qls | Gp,Gs) , (12)

where S is the number of connected components (synthons)
and the leaving group qls is selected from a pre-computed
vocabulary from the training dataset. Therefore, we havePQ

s2S P (qls | Gp,Gs) = 1. G2Gs modifies the second
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P (A | Gp,Gs) = 1 and
P

P (E | Gp) = 1, it is evident
that each stage of the two-stage model operates with local
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X
P (R | mp) = 1, (13)

and these two semi-template-based models are also locally
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proach retrosynthesis as a sequence-to-sequence task by
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P (R | mp) =
TY

t=1

P (xt | Xp, x1, x2, · · · , xt�1) , (14)
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P
P (xt | Xp, x1, x2, · · · , xt�1) = 1 and
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Figure 2. For a given target molecule, we find two synthetic routes
that can synthesize it in the dataset.

As discussed before, locally normalized models operate on
the molecule instead of the whole synthetic route. This
step-by-step generation process often fails to account for
long-range factors, primarily because it relies on pure proba-
bility for predicting routes without forward-thinking various
criteria such as starting material costs and the feasibility of
synthetic routes. In this work, we propose a general and
principled framework via conditional residual energy-based
models to improve the quality of synthetic routes.

3.3. Conditional Residual Energy-based Models

EBMs offer compositionality (Du et al., 2020; 2021; 2023),
enabling the integration of extra energy functions to evaluate
synthetic routes based on multiple criteria and thus develop
a new probabilistic model. This formulates our method as a
conditional residual EBM (Deng et al., 2020).

P✓ (T | mtar, c)

= PRetro (T | mtar)
exp (�E✓ (T | mtar, c))

Z✓ (mtar, c)

/ PRetro (T | mtar) exp (�E✓ (T | mtar, c)) ,

(15)

where PRetro (T | mtar) is a strategy via the combination
of the retrosynthesis model and search algorithm, c de-
notes specific criteria (condition), Z✓ (mtar, c) is a normal-
izing factor, P✓ is the joint model, and E✓ is the condi-
tional residual energy function for evaluating the quality
given c. During the training of our energy function E✓,
PRetro (T | mtar) is fixed. Therefore, our approach is a
post-training method, freezing the base model when train-
ing additional components, and can be applied on top of
any existing strategy, while its black-box nature makes it
convenient to adopt. With such CREBM, we aim to improve
the quality of the most probable synthetic routes, those with
higher likelihoods, generated by existing strategies to meet
specific criteria and achieve controllable generation.
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How to Train Our CREBM

Preference Optimization for Molecule Synthesis with Conditional Residual Energy-based Models

3.3.1. TRAINING

As discussed in Section 1, maximizing Eq. (15) through
MLE is challenging due to the normalization factor. Deng
et al. (2020) address this by sampling sequences from the
training dataset and generated sequences from an autore-
gressive LM as positive and negative pairs, respectively.
They then train the energy function as a binary classifier to
distinguish between ground truth and generated texts.

However, in retrosynthetic planning, we usually do not have
fixed ground truth synthetic routes. Given a product, we
can find multiple routes within the dataset to synthesize it
as shown in Figure 2. Preference for different synthetic
routes varies according to different criteria. For example,
consider two synthetic routes: one with a high yield but
environmentally unfriendly, and the other with a low yield
but eco-friendly. In this case, our preference for either route
varies based on our priorities regarding energy conservation
and emission reduction. We use a real-world example in
Appendix E to illustrate the trade-off between yield and
environmental impact in molecule synthesis. Therefore,
we can’t train our model via NCE. Inspired by the recent
successes of alignment algorithms (Ouyang et al., 2022;
Rafailov et al., 2023) in LLMs, we can potentially obtain
preference comparisons among various routes based on spe-
cific criteria. Then, we train our model using a preference-
based loss function. Given a target molecule mtar, we have
n synthetic routes {T1, T2, . . . , Tn} that can synthesize it.
We define a reward function based on a specific criteria c.

' (· | mtar, c) : Xtar ! V, (16)

where Xtar is the space of synthetic routes for molecule
mtar and V 2 R is a scalar value. The higher the value
V of a synthetic route T , the more it meets our criteria
c. So given two synthetic routes T1 and T2, we can have
preference. Bradley-Terry (BT) (Bradley & Terry, 1952)
model is a common choice for modeling preferences. The
likelihood of preferring route T1 over T2 is as follows:

P ⇤ (T1 � T2 | mtar, c)

=
exp ( ⇤ (T1 | mtar, c))

exp ( ⇤ (T1 | mtar, c)) + exp ( ⇤ (T2 | mtar, c))

s. t. ' (T1 | mtar, c) > ' (T2 | mtar, c) ,
(17)

where  ⇤ is the ground truth reward function. T1 � T2
means ' (T1 | mtar, c) > ' (T2 | mtar, c), and T1 is pre-
ferred than T2. Thus, the loss function for our model is

L = �E [log � (�E✓ (Tw | mtar, c) + E✓ (Tl | mtar, c))]

s. t. (mtar, Tw, Tl) ⇠ D,
(18)

where � is the sigmoid function and ' (Tw | mtar, c) >
' (Tl | mtar, c) given c. We use a reference synthetic route

and multiple routes sampled from PRetro for each molecule
in the training dataset to construct our synthetic preference
dataset D. In our implementation, we only use one strategy
(Neuralsym+Retro*-0) as our PRetro for sampling multiple
synthetic routes to update ✓ during training.

3.3.2. IMPLEMENTATION OF '

The key is the implementation of ', which ranks synthetic
routes that align with diverse criteria. Some criteria, such
as the novelty and reliability of a synthetic route, are not
easily quantifiable through a reward function. While some
criteria like material costs can be quantified, a pharmaceuti-
cal company’s production equipment may not necessarily
be compatible with the cheapest route predicted by the ma-
chine learning model. Therefore, it is crucial to consider
whether the available equipment can accommodate the reac-
tion conditions in the predicted synthetic routes. However,
incorporating production equipment specifications into the
reward function design poses a significant challenge. Ide-
ally, chemists or manufacturers would evaluate and rank the
routes according to their expertise, but it is expensive for our
research. Therefore, we design a heuristic reward function
for ranking purposes, rather than estimating rewards. This
approach aligns with recent developments in LLMs, which
also rank responses instead of assigning accurate scores
when constructing preference datasets.

In this work, we focus on assessing the feasibility of start-
ing materials for synthesizing the target molecule. This
emphasis comes from the necessity for machine learning
models to first ensure that the predicted synthetic route can
be executed in the wet lab before considering other criteria.
We use a forward model to simulate the synthesis process to
replace the wet lab experiments and compare the similarity
of the produced product with the target molecule. Besides,
we have multiple routes for synthesizing the same target
molecule. Sometimes a new synthetic route can be obtained
by simply substituting a chlorine atom in a material with a
different halogen atom. Therefore, we also consider routes
whose materials are similar to those of the reference route
as a better choice. So our ' can be rewritten as

' (T | mtar, c) = sim (f(B),mtar) + sim (B,Bref ) ,
(19)

where Bref is the starting material set of the reference syn-
thetic route, f denotes the forward model, and sim (·, ·) is
the Tanimoto similarity function. Note that the Tanimoto
similarity function provides a measure of similarity between
two sets of fingerprint bits. Therefore, it can be used for
computing the similarity between two sets of molecules.

3.3.3. INFERENCE

After completing the training, our energy function can be
applied on top of any strategy in a plug-and-play man-
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By using this loss function, we can prefer the synthetic routes with higher 
desired quality (lower energy). The sigmoid function can output the value 
between 0 and 1, which is indeed probability.
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CREBM Framework
Preference Optimization for Molecule Synthesis with Conditional Residual Energy-based Models

Algorithm 1 CREBM Framework
1: [Train Phase]: Learning:
2: Define reward function ' (· | mtar, c) as Eq. (16)
3: ' (· | mtar, c) : Xtar ! V
4: Rank synthetic routes Xtar ⇠ PRetro based on '
5: Train Conditional Residual Energy-based Models:
6: ✓⇤ = argmin✓ L = argmax✓ E(mtar,Tw,Tl)⇠D
7: [Test Phase]: Inference:
8: Input: ✓⇤, mtar, Proposal Xtar ⇠ PRetro (· | mtar).
9: L � logPRetro (T | mtar) + E✓ (T | mtar, c)

10: T ⇤ = argminT 2Xtar L
11: Return T ⇤

ner. With the well-learned energy function E✓⇤ where
✓⇤ = argmin✓ L, the inference process aims to find the
best synthetic route T ⇤ that minimizes the negative log-
likelihood for a specific target molecule mtar and a given
criteria c, i.e.

T ⇤ = arg min
T 2Xtar

(E✓ (T | mtar, c)� logPRetro (T | mtar)).

(20)
In other words, we find T ⇤ by maximizing P✓⇤ (T | mtar, c)
among all routes sampled from PRetro (T | mtar). We il-
lustrate the overall process in Algorithm 1.

3.3.4. DISCUSSION

In this section, we answer some questions that are related to
our work.

Q1: With the reward function, why use Bradley-Terry model
instead of reinforcement learning for CREBM training?
A1: As discussed in Section 3.3.2, it’s very difficult to
build an accurate point-wise reward function (Bhattacharyya
et al., 2020; Haroutunian et al., 2023) for reinforcement
learning (RL). We attempted to use the reward function in
Eq. (16) to train an RL model. We generated synthetic routes
from the RL model and used the product of its negative
log-likelihood and the reward function as the training loss.
However, experimental results indicated a significant drop
in accuracy compared to the base model. Training and
fine-tuning an RL model proved to be very challenging.
In contrast, we did not adjust any hyperparameters when
training our CREBM. Therefore, we believe training with
a preference-based loss function is better, or at least much
easier to make things work.

Q2: Why not use the parameter-efficient fine-tuning for
preference alignment?
A2: Directly modifying the base model can be challenging
because: 1. Route generation involves a single-step ret-
rosynthesis model and a search algorithm, both of which are
currently trained independently. Integrating these compo-
nents for joint training is necessary for parameter-efficient
fine-tuning, but this integration requires significant modifi-

cations to both parts, which we believe is inefficient. For
instance, it is difficult to fine-tune a template-based clas-
sifier for preference alignment. 2. While specific criteria
necessitate fine-tuning all strategies, with CREBM, we only
need to train the model for these criteria once. Afterward,
it can be applied to any strategy in a plug-and-play fashion.
As discussed in Section 3.3, we can conclude our CREBM
approach is more efficient.

Q3: Is a fair comparison since the baseline methods don’t
use an additional reward function?
A3: Our method is complementary to most existing strate-
gies, as we are building an adapter that can improve most
existing methods by treating them as a base model in the
CREBM framework. Experimental results in Section 4.2
demonstrate that our method consistently enhances the per-
formance across all base methods and is a general model-
agnostic approach that can bring additional benefits with
this lightweight post-training.

Q4: Comparison with an explicit search policy function like
PDVN (Liu et al., 2023a)?
A4: PDVN requires training different explicit search pol-
icy functions based on the specific retrosynthesis models
employed. Our approach begins by sampling routes from
Neuralsym and Retro*-0. These sampled routes are then
utilized to train our CREBM. Subsequently, we employ our
CREBM as an adapter to collaborate with any base model
and search algorithm during inference, without the need for
any additional tuning.

4. Experiments
In this section, we evaluate the performance of our proposed
framework in retrosynthetic planning.

4.1. Experimental Setup

Dataset. We use the public dataset RetroBench (Liu et al.,
2023b) for evaluation. The target molecules associated
with synthetic routes are split into training, validation, and
test datasets in an 80%/10%/10% ratio. We have 46,458
data points for training, 5,803 for validation, and 5,838
for testing. Synthetic routes for each target molecule are
extracted from the reaction network which is constructed
with all reactions in USPTO-full. More details about the
dataset can be found in Appendix C.

Evaluation Protocol. We use the set-wise exact match
between the predicted starting material set and that of the
reference route in the test dataset as our evaluation metric.
Note that for a given target, there might be several synthetic
routes available in the test set. We consider the prediction
to be accurate when the set of starting materials predicted
matches with any one of the various reference options.
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Table 1. Summary of retrosynthetic planning results in terms of exact match accuracy (%). Our framework (CREBM) can consistently
improve the performance of existing strategies.

One-step Model
Search Algorithm Retro* Retro*-0 Greedy DFS

Top-1 Top-2 Top-3 Top-4 Top-5 Top-1 Top-2 Top-3 Top-4 Top-5 Top-1

Template-based

Retrosim (Coley et al., 2017) 35.1 40.5 42.9 44.0 44.6 35.0 40.5 43.0 44.1 44.6 31.5
Neuralsym (Segler & Waller, 2017) 41.7 49.2 52.1 53.6 54.4 42.0 49.3 52.0 53.6 54.3 39.2
Neuralsym+CREBM 44.2 50.8 53.6 54.6 55.4 44.5 51.0 53.5 54.5 55.2 -
GLN (Dai et al., 2019) 39.6 48.9 52.7 54.6 55.7 39.5 48.7 52.6 54.5 55.6 38.0
GLN+CREBM 43.3 51.1 53.9 55.5 56.4 43.2 51.0 53.8 55.5 56.3 -

Semi-template-based

G2Gs (Shi et al., 2020) 5.4 8.3 9.9 10.9 11.7 4.2 6.5 7.6 8.3 8.9 3.8
GraphRetro (Somnath et al., 2021) 15.3 19.5 21.0 21.9 22.4 15.3 19.5 21.0 21.9 22.2 14.4
GraphRetro+CREBM 16.3 20.1 21.6 22.3 22.7 16.3 20.2 21.6 22.3 22.7 -

Template-free

Transformer (Karpov et al., 2019) 31.3 40.4 44.7 47.2 48.9 31.2 40.5 45.1 47.3 48.7 26.7
Transformer+CREBM 35.0 43.4 46.7 48.5 49.7 34.9 43.5 46.6 48.4 49.6 -
Megan (Sacha et al., 2021) 18.8 29.7 37.2 42.6 45.9 19.5 28.0 33.2 36.4 38.5 32.9
FusionRetro (Liu et al., 2023b) 37.5 45.0 48.2 50.0 50.9 37.5 45.0 48.3 50.2 51.2 33.8
FusionRetro+CREBM 39.4 46.6 49.3 50.7 51.5 39.6 46.7 49.5 51.0 51.7 -

Baselines. A retrosynthetic planning strategy is a com-
bination of a retrosynthesis model and a search algo-
rithm. We consider template-based models: Retrosim (Co-
ley et al., 2017), Neuralsym (Segler & Waller, 2017) and
GLN (Dai et al., 2019); template-free models: Trans-
former (Karpov et al., 2019) and Megan (Sacha et al., 2021);
semi-template-based models: G2Gs (Shi et al., 2020) and
GraphRetro (Somnath et al., 2021); as our retrosynthesis
models. For the algorithm, we use Retro* (Chen et al.,
2020) and Retro*-0. Retro* utilizes a neural architecture to
evaluate the future score in retrosynthetic planning, while
Retro*-0 is indeed a beam search.

Implementation Details. In this work, our focus is on the
feasibility of the starting materials. Therefore, we disregard
intermediate molecules for our E✓. In a more general case,
the preferences between routes can depend on intermediate
molecules as well. We leave this exploration to future work,
which is flexible in our framework. We employ a standard
Transformer (Vaswani et al., 2017) architecture to imple-
ment E✓ (T | mtar, c), with the target molecule serving as
the input for the encoder and the starting material (right
shift) as the input for the decoder. The output is the logits
of the starting material (left shift) for computing E✓. One
thing we’d like to point out is that E✓ is pretrained first on
the target-to-starting material task, so we naturally deploy
this for modeling, instead of training an encoder-only one
from scratch. We also employ the standard Transformer

Table 2. Summary of results with our CREBM in terms of top-1
accuracy (%) on routes of different depths.

Model Retro*-0

2 3 4 5 6

Neuralsym 46.1 42.0 33.7 37.3 40.8
+CREBM +2.2 +2.1 +4.9 +2.9 +5.0

GLN 46.4 39.0 32.6 25.3 21.8
+CREBM +2.7 +3.1 +4.7 +7.1 +14.5

Transformer 39.3 30.1 20.9 15.2 16.2
+CREBM +2.4 +5.3 +3.0 +5.6 +10.6

architecture to implement the forward model, framing the
task of predicting a product from starting materials as a
sequence-to-sequence task. For constructing our preference
dataset D, we sample 10 synthetic routes for each molecule
in the training dataset. All the models in the work are trained
on the NVIDIA Tesla A100 GPU. More details about hyper-
parameters can be found in Appendix D.

4.2. Results

We report top-k accuracy in Table 1. We reuse the metrics
of the baselines already reported in Liu et al. (2023b). The
results demonstrate that the strategies equipped with our
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models. For the algorithm, we use Retro* (Chen et al.,
2020) and Retro*-0. Retro* utilizes a neural architecture to
evaluate the future score in retrosynthetic planning, while
Retro*-0 is indeed a beam search.

Implementation Details. In this work, our focus is on the
feasibility of the starting materials. Therefore, we disregard
intermediate molecules for our E✓. In a more general case,
the preferences between routes can depend on intermediate
molecules as well. We leave this exploration to future work,
which is flexible in our framework. We employ a standard
Transformer (Vaswani et al., 2017) architecture to imple-
ment E✓ (T | mtar, c), with the target molecule serving as
the input for the encoder and the starting material (right
shift) as the input for the decoder. The output is the logits
of the starting material (left shift) for computing E✓. One
thing we’d like to point out is that E✓ is pretrained first on
the target-to-starting material task, so we naturally deploy
this for modeling, instead of training an encoder-only one
from scratch. We also employ the standard Transformer

Table 2. Summary of results with our CREBM in terms of top-1
accuracy (%) on routes of different depths.
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2 3 4 5 6
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+CREBM +2.2 +2.1 +4.9 +2.9 +5.0
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+CREBM +2.4 +5.3 +3.0 +5.6 +10.6

architecture to implement the forward model, framing the
task of predicting a product from starting materials as a
sequence-to-sequence task. For constructing our preference
dataset D, we sample 10 synthetic routes for each molecule
in the training dataset. All the models in the work are trained
on the NVIDIA Tesla A100 GPU. More details about hyper-
parameters can be found in Appendix D.
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We report top-k accuracy in Table 1. We reuse the metrics
of the baselines already reported in Liu et al. (2023b). The
results demonstrate that the strategies equipped with our
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Ablation Study
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Table 3. Ablation study on our energy function.

Metric for Ranking Top-1 �1 Top-5 �2

� logPRetro (T | mtar) 42.0 0 54.3 0

� logPRetro (T | mtar) + E✓ (T | mtar, c) 44.5 +2.5 55.2 +0.9
E✓ (T | mtar, c) 34.1 -7.9 53.1 -1.2
� logPRetro (T | mtar)� E✓ (T | mtar, c) 19.2 -22.8 44.6 -9.7

framework, CREBM, achieve better performance. Specifi-
cally, our framework can achieve state-of-the-art top-1 ac-
curacy with Neuralsym+Retro*-0. We can conclude our
framework can consistently improve the performance of all
strategies, and predict more feasible synthetic routes. As
shown in Table 2, our framework can also improve perfor-
mance no matter how long the synthetic route is. When
the length of routes is larger, our amplification becomes
more pronounced, which demonstrates our framework can
improve the performance of long route prediction.

4.3. Ablation Study

We conduct an ablation study with Retro*-0+Neuralsym
to verify the effectiveness of our proposed energy function.
As shown in Table 3, only using the energy function for
route ranking results in a significant drop in top-1 accuracy
and a marginal decrease in top-5 accuracy. This indicates
that our energy function still performs well within the top-5
predictions. Adjusting the probability by adding or subtract-
ing the energy function leads to corresponding increases
or decreases in accuracy, thereby confirming the effective-
ness of our energy function from both positive and negative
perspectives.

4.4. Visualization of Synthetic Routes used to Train the
Energy Function

We provide a visual example (Figure 3) of the synthetic
routes that are used to train the energy function and ranked
based on Eq. (19). We can find that higher-ranked routes
have a greater likelihood of successfully synthesizing the
target molecule, and their starting materials are more closely
aligned with the reference materials. The starting materials
of the second-ranked route only require replacing the iodine
atom in one of the starting materials of the reference route
with a bromine atom.

5. Related Work
Retrosynthesis Model. Current one-step retrosynthe-
sis models fall into three distinct categories: template-
based (Coley et al., 2017; Segler & Waller, 2017; Dai et al.,
2019; Chen et al., 2020; Chen & Jung, 2021; Seidl et al.,
2021), semi-template-based (Shi et al., 2020; Yan et al.,
2020; Somnath et al., 2021), and template-free (Liu et al.,
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Figure 3. A visual example of a target molecule’s synthetic routes
used to train the energy function, with these routes ranked accord-
ing to Eq. (19).

2017; Zheng et al., 2019; Chen et al., 2019; Karpov et al.,
2019; Ishiguro et al., 2020).

Search Algorithm. Search algorithms (Segler et al., 2018;
Han et al., 2022) select the most promising candidate at
each step of the retrosynthetic planning. More details about
related work can be found in Appendix B.

6. Conclusion and Future Work
In this work, we propose a framework based on conditional
residual energy-based models to improve the quality of syn-
thetic routes generated by existing retrosynthetic planning
strategies. We implement one CREBM to enhance the feasi-
bility of routes for synthesizing the target molecule. Exten-
sive experimental results show our proposed framework can
improve the accuracy of existing strategies. Our work can
inspire future research to develop compositional CREBMs
based on multiple criteria for molecule synthesis.
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Table 3. Ablation study on our energy function.

Metric for Ranking Top-1 �1 Top-5 �2

� logPRetro (T | mtar) 42.0 0 54.3 0

� logPRetro (T | mtar) + E✓ (T | mtar, c) 44.5 +2.5 55.2 +0.9
E✓ (T | mtar, c) 34.1 -7.9 53.1 -1.2
� logPRetro (T | mtar)� E✓ (T | mtar, c) 19.2 -22.8 44.6 -9.7

framework, CREBM, achieve better performance. Specifi-
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mance no matter how long the synthetic route is. When
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more pronounced, which demonstrates our framework can
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We conduct an ablation study with Retro*-0+Neuralsym
to verify the effectiveness of our proposed energy function.
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route ranking results in a significant drop in top-1 accuracy
and a marginal decrease in top-5 accuracy. This indicates
that our energy function still performs well within the top-5
predictions. Adjusting the probability by adding or subtract-
ing the energy function leads to corresponding increases
or decreases in accuracy, thereby confirming the effective-
ness of our energy function from both positive and negative
perspectives.

4.4. Visualization of Synthetic Routes used to Train the
Energy Function

We provide a visual example (Figure 3) of the synthetic
routes that are used to train the energy function and ranked
based on Eq. (19). We can find that higher-ranked routes
have a greater likelihood of successfully synthesizing the
target molecule, and their starting materials are more closely
aligned with the reference materials. The starting materials
of the second-ranked route only require replacing the iodine
atom in one of the starting materials of the reference route
with a bromine atom.

5. Related Work
Retrosynthesis Model. Current one-step retrosynthe-
sis models fall into three distinct categories: template-
based (Coley et al., 2017; Segler & Waller, 2017; Dai et al.,
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ing to Eq. (19).

2017; Zheng et al., 2019; Chen et al., 2019; Karpov et al.,
2019; Ishiguro et al., 2020).

Search Algorithm. Search algorithms (Segler et al., 2018;
Han et al., 2022) select the most promising candidate at
each step of the retrosynthetic planning. More details about
related work can be found in Appendix B.

6. Conclusion and Future Work
In this work, we propose a framework based on conditional
residual energy-based models to improve the quality of syn-
thetic routes generated by existing retrosynthetic planning
strategies. We implement one CREBM to enhance the feasi-
bility of routes for synthesizing the target molecule. Exten-
sive experimental results show our proposed framework can
improve the accuracy of existing strategies. Our work can
inspire future research to develop compositional CREBMs
based on multiple criteria for molecule synthesis.
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