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1. Molecule Synthesis
(Retrosynthetic Planning)



Background: Retrosynthesis Prediction

Given a target product molecule the goal of one-step retrosynthesis 1s to
predict a set of reactants that can react to synthesize this product.
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Background: Retrosynthetic Planning

Given a target molecule, the goal of retrosynthetic planning is to search for
the starting materials that can synthesize the target molecule through a set
of chemical reactions
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Background: Synthetic Route Generation




Background: Synthetic Route Generation
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Background: Synthetic Route Generation
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Background: Synthetic Route Generation
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Background: Synthetic Route Generation

= MO
B

GO

(o)

— I
Cl/ ~cl

cl Starting
Ci Material !!!
I OH

Starting
Material !!!

Material !!!




Background: Synthetic Route Generation

OH

GO

0 Retrosynthesis
~7N Prediction
H
NH,

.c}@

Selection via
Search algorithm

SO

Selection via E
Search algorithm




Background: Synthetic Route Generation
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2. Probabilistic View of
Retrosynthetic Planning



Markov Chain 1n Retrosynthetic Planning
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FusionRetro: An Autoregressive Model for

Retrosynthetic Planning
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[ 1] exploits previous molecules as e Autoregressive

context to generate the next Retrosynthetic

reactant set, which can improve :
the performance of singe-step ___ Planning Model
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[1] FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning, 2023 ICML



One-Step Retrosynthesis Models can’t
Generate Routes with Desired Quality

Each Step 1 the retro Syn‘[hesis Any ranking of plans for the synthesis of a given target compound depends
. . . on benchmarks which must be defined. Possible criteria may be
planning 1s locally normalized.

i.e. )p P(R|mp,-) =1, my, is
the product and R 1s the
reactant set.
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the shortest route (time involved),

the cheapest route (cost of materials),

the novelty of the route (patentability),

the greenest route (avoidance of problematic waste),

the healthiest route (avoidance of toxic intermediates and side products),
the most reliable route (lowest risk approach).

This step-by-step generation process often fails
0 / @i to account for criteria primarily because it relies

Se { \Q on pure probability (local normalization) for

© °/{@‘-’/ predicting routes without forward-thinking.
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Figure 2. For a given target molecule, we find two synthetic routes
that can synthesize it in the dataset.



3. Conditional Residual Energy-
based Models for Controllable
Synthetic Route Generation



Energy Function for Evaluating the Quality
of Synthetic Routes

po(T) o< exp (108 Pretro(T) — Eo(T))

By introducing E4(T"), we can consider various criteria and incorporate
additional properties encoded within Eg (7°), which is defined on the
synthetic route, allowing for route evaluation based on various criteria.



Energy-based Models (discrete space)

Energy-based models define the distribution via an energy function. For x €
RP, its probability density can be expressed as:

_exp (—Fy(x))
Py(x) = Z(@)Q :

where Z(0) = | exp(—E 0 (x)) is the normalization constant.

Typically, we use NCE loss function to approximate the target distribution.

L= —Eypy,,[1080(~Eo(0))] = Ex-ppy.[l0g(1 — o(~Eo(D)))]



Residual Energy-based Models

Residual Energy-based Models[3]:

Py(x) < Prar(x) exp(—FEg(x))

P, (x) is a locally normalized model. By incorporating the energy function,
Pg(x) can approximate the target distribution better.

1
1+ exp(—Eg (f))

L=E log

- lo + Es
) P[ ° 1+exp(E9<x>)] i} P“"[

[3] Residual Energy-based Models for Text Generation, 2020 ICLR



Conditional Residual Energy-based Models

Py (T | Mtar, C)
exp (—Ep (T | miar, c))
ZQ (mta?“a C)

X PRetro <T | mtar) exXp (_EQ (T | Mtar, C)) ’

— PRetro (T | mtar)

Ppetro (T'|meyy-) 1s @ base model, ¢ denotes specific criteria (condition), Eg 1S
the conditional residual energy function for evaluating the quality given c.
During the training of our energy function Eg, Pretro (I |Meqr) 18 fixed.
Therefore, our CREBM is a post-training method and can be applied on top
of any Pretro (T |Miqr).



How to Train Our CREBM

L = — [log()' (—EQ (720 | Miar, C) + EG (72 | Mtar, C))]
S. t. (mta’r7 7:07 77) ™~ D’

By using this loss function, we can prefer the synthetic routes with higher
desired quality (lower energy). The sigmoid function can output the value
between 0 and 1, which 1s indeed probability.



How to Train Our CREBM

L=-FE [IOgU (—EO (7;1) ‘ Mtar, C) + Ly (,n | Mtar, C))]
s. t. (mta'm 7:1)7 7?) ~ Dv

We use one base model for sampling synthetic routes to construct our
synthetic preference dataset D. The preference 1s constructed by the
following reward function for evaluating the quality of synthetic routes:

2 ( | mta,rac) : Xtar — V,

In this work, we focus on the feasibility of generated synthetic routes. We
implement reward function as

P (T ‘ Mtar, C) = slm (f(B)amtar) + sim (87 Bref) 3



CREBM Framework

Algorithm 1 CREBM Framework

1: [Train Phase]: Learning:

Define reward function ¢ (- | my¢qr, ¢) as Eq. (16)

¥ ( ’ mta/mc) : Xta’r — V

Rank synthetic routes X, ~ PRretro based on ¢
Train Conditional Residual Energy-based Models:
0" = arg ming L = arg 1maxg E(mtw,Tw,ﬂ)ND
[Test Phase]: Inference:

Input: 6%, myq,, Proposal Xiqr ~ Pretro (- | Miar)-
L+ — log PRetro (T ’ mta,r) =+ EQ (T ‘ Mtar, C)
7-* — arg minTEXtar L

. Return 7*
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4. Experiments



Results

In this work, we use the set-wise match between the predicted starting
material set and the reference to evaluate the feasibility.

Table 1. Summary of retrosynthetic planning results in terms of exact match accuracy (%). Our framework (CREBM) can consistently
improve the performance of existing strategies.

Search Algorithm Retro* Retro*-0 Greedy DFS
One-step Model Top-1 Top-2 Top-3 Top-4 Top-5 Top-1 Top-2 Top-3 Top-4 Top-5 Top-1

Template-based

Retrosim (Coley etal, 2017) 351 405 429 440 446 350 405 430 441 446 315
Neuralsym (Segler & Waller, 2017) 41.7 49.2 52.1 53.6 544 42.0 493 520 53.6 543 39.2
Neuwralsym+CREBM 442 508 536 546 554 445 SLO 535 545 552 -
GLN (Dai et al., 2019) 39.6 489 527 54.6 557 39.5 487 52.6 545 556 38.0
GLN+CREBM 433 51.1 539 555 564 432 51.0 53.8 555 56.3 -
Semi-template-based

G2Gs (Shietal, 2020) >4 83 99 109 117 42 65 76 83 89 = 38
GraphRetro (Somnath et al., 2021) 153 19.5 21.0 219 224 153 195 21.0 219 222 14.4
GraphRetro+CREBM 163 20.1 21.6 223 227 163 20.2 21.6 223 227 -

Template-free

Transformer (Karpov et al., 2019) 31.3 404 4477 472 489 312 405 451 473 48.7 26.7

Transformer+CREBM 350 434 467 485 497 349 435 466 484 496 -
Megan (Sachaetal, 202) 188 297 372 426 459 195 280 332 364 385 = 329
FusionRetro (Liu et al., 2023b) 3757450 4827500 509 375 450 483 502 5127 338

FusionRetro+CREBM 394 46.6 493 50.7 515 39.6 46.7 495 51.0 517 -




Results

Table 2. Summary of results with our CREBM in terms of top-1
accuracy (%) on routes of different depths.

Retro*-0
2 3 4 5 6

Neuralsym 46.1 42.0 337 373 408
+CREBM +2.2 421 +49 +29 450

GLN 464 390 326 253 21.8
+CREBM +2.7 +3.1 +47 +7.1 +14.5

Transformer 39.3 30.1 209 15.2 16.2
+CREBM +24 +53 +3.0 +5.6 +10.6

Model




Ablation Study

Table 3. Ablation study on our energy function.

Metric for Ranking Top-1 A; Top-5 A,
—log Pretro (T | miar) 420 0 [543 0

—log Pretro (T | Miar) + Eo (T | myar,c)| 44.5 | +2.5] 55.2 |+0.9
Ey (T | miar, €) 34.1 | -7.9 | 53.1 |-1.2
—log Pretro (T | Mmtar) — Eo (T | miar, €) 19.2 |-22.8| 44.6 |-9.7




Preference Visualization

@ference Route
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Code & arXiv

Code: https://github.com/SongtaocL1u0823/CREBM
arX1v: https://arxiv.org/pdi/2406.02066



Q&A

Thank you!
And any question?



