A New Partial *p*-Wasserstein-Based Metric For Comparing Distributions

Sharath Raghvendra, Pouyan Shirzadian, Kaiyi Zhang

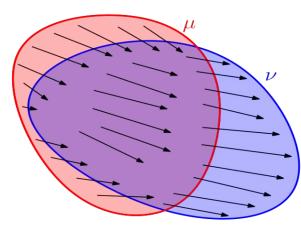
ICML 2024

p-Wasserstein Distance

For two probability distributions μ and ν , let γ be a minimum-cost transport plan that transports all the mass from μ to ν . The *p***-Wasserstein distance** between μ and ν is

$$W_p(\mu, \nu) = (\int_{X \times X} ||x - y||^p d\gamma(x, y))^{1/p}.$$

For a parameter $0 \le \alpha \le 1$, the α -partial p-Wasserstein distance between μ and ν is the cost of the minimum-cost transport plan that transports α mass from μ to ν .



Sensitivity of *p*-Wasserstein Distance

High sensitivity to small geometric differences: For two distributions μ and $\nu = (1 - \delta)\mu + \delta \nu'$, the p-Wasserstein distance between μ and ν can be as high as $\delta^{1/p}W_{p}(\mu, \nu')$.

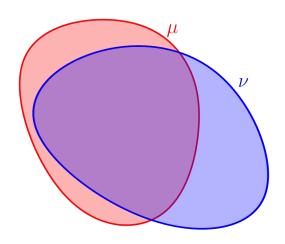
High sensitivity to outlier: Adding a noise of δ can cause the distance to be distorted by $\delta^{1/p}$. So, 1% outlier mass (δ = 0.01) can cause the distance to increase by 0.1 for p = 2 and by 0.21 for p = 3.

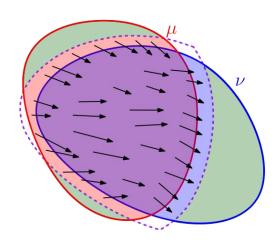
High sensitivity to sampling discrepancy: The rate of the convergence of empirical to true p-Wasserstein distance is $n^{-1/2p}$.

Our Distance Function

Given two distributions μ and ν defined over a support X with a unit diameter, the **Robust Partial** p-Wasserstein distance (p-RPW) between them is the smallest ε for which the cost of ($1 - \varepsilon$)-partial p-Wasserstein distance between μ and ν is at most ε .

$$\Pi_{p}(\mu, \nu) = \inf \left\{ \varepsilon \geq 0 \mid W_{p, 1-\varepsilon}(\mu, \nu) \leq \varepsilon \right\}$$





Properties of *p*-RPW

Property 1 (Metric Property): The *p*-RPW distance satisfies identity, positivity, symmetry, and the triangle inequality.

Property 2 (Robustness to Outliers): A δ outlier mass can only distort our distance by at most δ .

Property 3 (Faster Convergence): The rate of convergence of the empirical p-RPW distance to the true p-RPW distance is $n^{-p/(4p-2)}$.

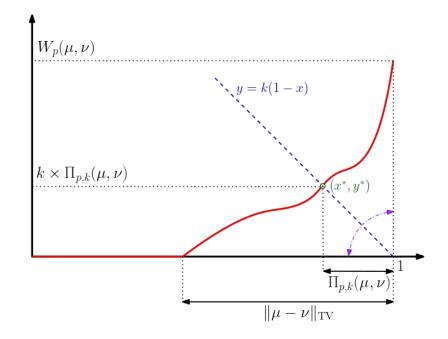
Property 4 (Retaining the Sensitivity of the *p***-Wasserstein Distance):** For two distributions μ and ν that differ in δ mass ($||\mu - \nu||_{TV} = \delta$), assuming that the $(1 - \delta/10)$ -partial *p*-Wasserstein distance between μ and ν is at least $W_p(\mu, \nu) / 2$, then

$$\Pi_{p}(\mu, \nu) = \Theta(\min \{\delta, W_{p}(\mu, \nu)\}).$$

Family of RPW Distances

For a parameter $k \ge 0$, the (p, k)-RPW between two distributions μ and ν is the smallest ε for which the cost of $(1 - \varepsilon)$ -partial p-Wasserstein distance between μ and ν is at most $k\varepsilon$.

$$\Pi_{p,k}(\mu,\nu) = \inf\{\varepsilon \ge 0 \mid W_{p,1-\varepsilon}(\mu,\nu) \le k\varepsilon\}$$



Relation to Well-Known Distances

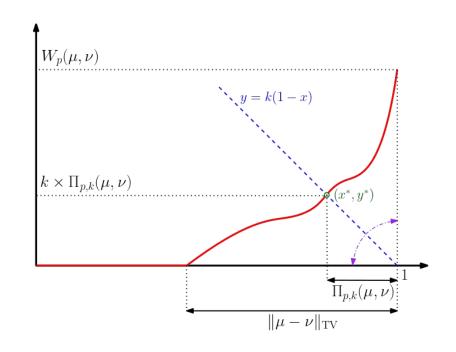
TV distance: When k = 0 and for any $p \ge 1$,

$$\Pi_{p,k}(\mu, \nu) = ||\mu - \nu||_{\mathrm{TV}}.$$

*p***-Wasserstein distance:** As $k \to \infty$,

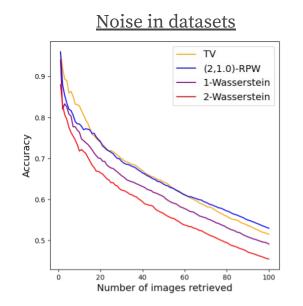
$$\Pi_{p,k}(\mu, \nu) \to W_p(\mu, \nu)/k$$
.

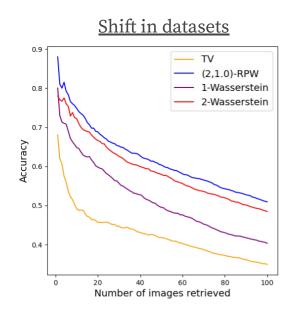
<u>Lévy-Prokhorov distance:</u> For $p = \infty$ and k = 1, $\Pi_{p,k}(\mu, \nu)$ is equal to the Lévy-Prokhorov distance between μ and ν .



Experiments

Image Retrieval using a labeled dataset of 2k images from MNIST and a query dataset of 50 images.







Thanks!