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Motivation & Contribution

Motivation
- Uncertainty estimation is crucial for deep learning models to detect 
out-of-distribution (OOD) inputs. Yet, improving the uncertainty 
estimation typically requires external data for OOD-aware training or 
considerable costs to build an ensemble. In this work, we improve on 
uncertainty estimation without extra OOD data or additional inference 
costs using an alternative Split-Ensemble method. 

What we propose
1) a subtask-splitting training objective for OOD-aware ensemble training 
without external data. 2) a dynamic splitting and pruning algorithm to 
build an efficient tree-like Split-Ensemble architecture corresponding to 
the subtask splitting. 3) significantly improves accuracy and OOD 
detection over a single model baseline with a similar computational cost, 
and outperforms larger ensemble baselines by a factor of 4×. 
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Methods

Subtask Splitting
- We semantically group the N classes into K groups, each group classes 
are assigned to one specific submodel as In-Distribution(ID) data, while 
all other classes are Out-Of-Distribution(OOD) for this submodel.
- Inspired by Outlier Exposure, a normal one-hot label is used for ID 
data, yet a uniform label is utilized for OOD data. 

Results

Results on SC-OOD CIFAR10-LT benchmarks 

Ablation
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Cifar-100 to Cifar10

Cifar-100 to Cifar10

Classification results on CIFAR-10 and CIFAR-100 

Classification results on TinyIMNet and IMNet

- We use an outlier exposure-
inspired target for the inputs 
belonging to the OOD class, to 
better calibrate the confidence 
during submodel training. 

- Our accuracy is not sensitive to the 
number of splits, increasing it enables 
better OOD detection performance(if not 
over aggressively pruned)

Model Splitting & Pruning
- We start ensemble training from a single backbone, (i.e. all submodels
share same architecture and parameters, except the final FC layer) 
- We use SNIP to calculate sensitivity masks for each layer across 
different submodels, and build a correlation graph based on the mask 
IoU score, which is used to decide whether two submodels can be split 
or not. (Minimal Cutting Threshold, MCT): minimal correlation 
threshold for edge removal to cut the graph into two)
- Iteratively, to remove redundancy in submodels for simpler subtasks, 
we do global structural pruning, but only to the filters that are prunable
for all submodel sharing it.
- The splitting is fixed when all submodels have an individual in later 
layers, and pruning is stopped when the Floating-point Operations 
(FLOPs) meet a predefined computational budget (typically the FLOPs 
of the original single model backbone)


