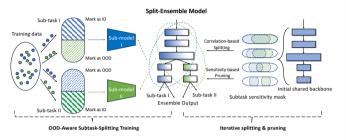


Split-Ensemble: Efficient OOD-aware Ensemble via Task and Model Splitting

Anthony Chen^{1*}, Huanrui Yang^{2*†}, Yulu Gan^{1*}, Denis A Gudovskiy³, Zhen Dong² Haofan Wang⁴, Tomoyuki Okuno³, Kurt Keutzer², Shanghang Zhang^{1†} ¹Peking University & ²UCB & ³Panasonic Inc. & ⁴CMU * Indicates equal contribution † Indicates corresponding author

Motivation & Contribution

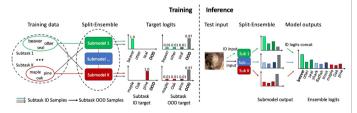


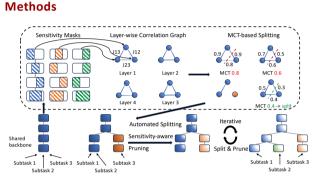
Motivation

- Uncertainty estimation is crucial for deep learning models to detect out-of-distribution (OOD) inputs. Yet, improving the uncertainty estimation typically requires external data for OOD-aware training or considerable costs to build an ensemble. In this work, we improve on uncertainty estimation without extra OOD data or additional inference costs using an alternative Split-Ensemble method.

What we propose

1) a subtask-splitting training objective for OOD-aware ensemble training without external data. 2) a dynamic splitting and pruning algorithm to build an efficient tree-like Split-Ensemble architecture corresponding to the subtask splitting. 3) significantly improves accuracy and OOD detection over a single model baseline with a similar computational cost, and outperforms larger ensemble baselines by a factor of 4x.





Subtask Splitting

- We semantically group the N classes into K groups, each group classes are assigned to one specific submodel as In-Distribution(ID) data, while all other classes are Out-Of-Distribution(OOD) for this submodel. - Inspired by Outlier Exposure, a normal one-hot label is used for ID data, yet a uniform label is utilized for OOD data.

Model Splitting & Pruning

- We start ensemble training from a single backbone, (i.e. all submodels share same architecture and parameters, except the final FC layer) - We use SNIP to calculate sensitivity masks for each laver across different submodels, and build a correlation graph based on the mask IoU score, which is used to decide whether two submodels can be split or not. (Minimal Cutting Threshold, MCT): minimal correlation threshold for edge removal to cut the graph into two)

- Iteratively, to remove redundancy in submodels for simpler subtasks, we do global structural pruning, but only to the filters that are prunable for all submodel sharing it.

- The splitting is fixed when all submodels have an individual in later layers, and pruning is stopped when the Floating-point Operations (FLOPs) meet a predefined computational budget (typically the FLOPs of the original single model backbone)

Results

Method	FLOPs CIFAR-10 Acc (†)		CIFAR-100 Acc (†)	
Single Model	1x	94.7 / 95.2	75.9 / 77.3	
Naive Ensemble	4x	95.7 / <u>95.5</u>	80.1 / 80.4	
MC-Dropout	4x	93.3 / 90.1	73.3 / 66.3	
MIMO	4x	86.8 / 87.5	54.9 / 54.6	
MaskEnsemble	4x	94.3 / 90.8	76.0 / 64.8	
BatchEnsemble	4x	94.0 / 91.0	75.5 / 66.1	
FilmEnsemble	4x	87.8 / 94.3	77.4 / 77.2	
Split-Ensemble (Ours)	1x	<u>95.5</u> / 95.6	<u>77.7 / 77.4</u>	

Classification results on CIFAR-10 and CIFAR-100

Method	TinyImageNet	ImageNet1K
Single Model Naive Ensemble	26.1 44.6	69.0 69.4
Split-Ensemble (ours)	51.6	70.9

Classification results on TinyIMNet and IMNet

Method	Accuracy ↑	$\mid \text{ ECE} \downarrow$	FPR95 \downarrow	AUROC \uparrow	AUPR \uparrow
Naive Ensemble	12.7	50.2	98.4	45.3	50.9
MC-Dropout	63.4	25.8	90.6	66.6	66.1
MIMO	35.7	28.8	96.3	55.1	56.9
MaskEnsemble	67.7	24.6	89.0	66.82	67.4
BatchEnsemble	70.1	21.1	87.45	68.0	68.7
FilmEnsemble	72.5	21.3	84.32	<u>75.5</u>	<u>76.0</u>
Split-Ensemble (ours)	73.7	16.5	80.5	81.7	77.6

Results on SC-OOD CIFAR10-LT benchmarks

Ablation

- Our accuracy is not sensitive to the number of splits, increasing it enables better OOD detection performance(if not over aggressively pruned)

# splits	2	4	5	8	10
Accuracy	77.7	78.0	77.9	77.5	77.3
AUROČ	78.1	78.2	79.9	80.4	77.3

# splits	OOD class target	Accuracy	AUROC
2	One-hot	71.0	76.0
2	OOD-aware	77.7	78.1
4	One-hot	77.2	77.5
4	OOD-aware	78.0	78.2
	One-hot	77.7	77.3
5	OOD-aware	77.9	78.1

Citar-100 to Citar10
- We use an outlier exposure-
inspired target for the inputs
belonging to the OOD class, to

better calibrate the confidence

during submodel training.

Cifar-100 to Cifar10