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Contrastive Language-lmage Pretraining (CLIP)

m CLIP is a multi-modal model that leverages contrastive learning to enable
zero-shot inference for open-vocabulary classes.
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Confidence Calibration

m Confidence calibration ensures that the predicted probabilities reflect the true
likelihood of correctness.

m Calibration is critical for deploying models in real-world applications, especially in
high-stakes scenarios.

Expected Calibration Error (ECE)
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Calibration Visualization

Reliability diagram is designed to demonstrate the consistency/gap between the
confidence of model predictions and the actual outcomes.
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A close look at fine-tuned CLIP calibration

m To achieve optimal performance in specialized domains, CLIP requires fine-tuning
(e.g., prompt tuning).

m Despite the improvements in accuracy, the calibration of fine-tuned CLIP models
has not been explored.
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Can fine-tuned CLIP be calibrated?

m Fine-tuning can result in underconfidence for base classes and overconfidence for
open-vocabulary classes.
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Can fine-tuned CLIP be calibrated?

m Post-hoc calibration can remedy miscalibration in base classes.

m Post-hoc calibration on base classes can not transfer to open-vocabulary classes.

ZS Conf TS DEN HB IR MIR

Base 358 482 194 0.73 423 209 0.82
Open 2.09 159 390 3.86 - - -
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Multi-modal Feature Visualization

m Compared with zero-shot CLIP, CoOp has a larger textual distribution gap for
both base and open-vocabulary classes.
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Motivation

Textual Proximity

1
P(w;, W) = exp K Z lwi —wijll2 |,
WjGNK(W,‘,W)

where w; is normalized textual embedding. Nk (w;, W) denotes the set of K nearest
neighbors of w;.
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Distance-Aware Calibration

Textual Deviation Estimation

_ P(w;, V')
¥(ci) = W’

where W and W’ denote the sets of normalized textual features for base classes.

LEC (x) =~(8) - 7+ sim (&(x), ¥(t0))

where & = argmax. p(c | x) is the predicted class t. is the textual token of class c.
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Experimental Setup

Image classification datasets: Compared methods:

m ImageNet m CoOp (JCV'22)

m Caltech101 m CoCoOp (CVPR'22)

m OxfordPets m ProDA (CVPR'22)

m StanfordCars m MaPLe (CVPR23)

m Flowers102 m ProGrad (ICCV'23)

m Food101 m PromptSRC (ICCV'23)
= FGVCAircraft Model architectures:

= SUN397 m Vit-B-16 (Radford et al., 2021)
m UCF101

m DTD

m EuroSAT
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Results on Few-shot Classification Benchmarks

ECE(]) ACE(]) MCE(]) PIECE(])
Method Conf DAC Conf DAC Conf DAC Conf DAC
CoOp 13.84 7.00 13.76  6.91 3.80 1.71 14.71  9.02
CoCoOp 6.29 4.82 6.21 4.77 1.79 1.40 8.07 17.15
ProDA 427 3.99 435 4.08 1.27 1.32 6.57 6.35
KgCoOp 436 4.32 443 438 1.18 1.13 6.67 6.63
MaPLe 577 4.61 571 4.64 1.82 1.42 759 6.98
ProGrad 422 3.74 427 3.74 1.22 1.09 6.75 6.55

PromptSRC  3.84 3.63 3.92 3.69 1.09 1.08 6.26 6.17

Table: Average calibration performance across 11 datasets.

m DAC improves open-vocabulary calibration in existing prompt tuning
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Detailed Calibration Results

Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Conf 0.00 19.24 1886 1587 2042 33.28 3030 37.84 41.60 1857
CoOp DAC 0.00 4.95 8.17 1133 651 1142 2412 1741 1137 -0.94
A 0.00 -1429 -10.69 -454 -1391 -21.86 -6.18 -20.43 -30.23 -19.51

Conf 0.00 0.00 -12.80 390 16.73 1050 38.07 2393 19.11 1213
MaPLe +DAC 0.00 -3.62 -1532 5.72 6.74 3.12 15.45 6.16 9.29 6.55
A 0.00 -362 -252 182 -10.99 -7.38 -22.62 -17.77 -9.82 -5.58

Conf 0.00 -382 014 -0.10 4.29 6.31 3.48 8.11 1.23 4.86
ProGrad +DAC 0.00 -0.71 003 130 -1.32 0.40 -0.65 -0.04 0.44 -0.34
A 0.00 311 -0.11 140 -5.61 -591 -413 -8.15 -0.79 -520

Table: Calibration results of ECE (%) across different confidence levels.

m DAC significantly reduces calibration error, especially for predictions with higher
confidence.
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Results Visualization

m DAC significantly reduces calibration error, especially for high-confidence
predictions.
m DAC regularizes the prediction with low TD score for better calibration.
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Ablation Study

m DAC is robust to the number of nearest neighbors.
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Conclusion

m Problem: We find that fine-tuned VLMs generally suffer from miscalibration, and
existing post-hoc calibration methods often fail in the open-vocabulary setting.

m Analysis: We empirically study the correlation between the calibration and the
textual distribution gap. We show that after prompt learning, VLMs tend to be
overconfident on classes far away from base classes.

m Method: We introduce DAC, a simple and effective post-hoc calibration method
that rectifies the predicted confidence while maintaining classification accuracy.

ArXiv: https://arxiv.org/abs/2402.04655
Code: https://github.com/ml-stat-Sustech/CLIP_Calibration
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