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Contrastive Language-Image Pretraining (CLIP)

CLIP is a multi-modal model that leverages contrastive learning to enable
zero-shot inference for open-vocabulary classes.
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Confidence Calibration

Confidence calibration ensures that the predicted probabilities reflect the true
likelihood of correctness.

Calibration is critical for deploying models in real-world applications, especially in
high-stakes scenarios.
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Calibration Visualization

Reliability diagram is designed to demonstrate the consistency/gap between the
confidence of model predictions and the actual outcomes.

Steps for Construction:

Binning

Average Predicted Probability

Observed Frequency
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A close look at fine-tuned CLIP calibration

To achieve optimal performance in specialized domains, CLIP requires fine-tuning
(e.g., prompt tuning).

Despite the improvements in accuracy, the calibration of fine-tuned CLIP models
has not been explored.
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Can fine-tuned CLIP be calibrated?

Fine-tuning can result in underconfidence for base classes and overconfidence for
open-vocabulary classes.
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Can fine-tuned CLIP be calibrated?

Post-hoc calibration can remedy miscalibration in base classes.

Post-hoc calibration on base classes can not transfer to open-vocabulary classes.

ZS Conf TS DEN HB IR MIR

Base 3.58 4.82 1.94 0.73 4.23 2.09 0.82
Open 2.09 1.59 3.90 3.86 - - -
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Multi-modal Feature Visualization

Compared with zero-shot CLIP, CoOp has a larger textual distribution gap for
both base and open-vocabulary classes.
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Motivation

Textual Proximity

P(w i ,W) = exp

− 1

K

∑
w j∈NK (w i ,W)

∥w i − w j∥2

 ,

where w i is normalized textual embedding. NK (w i ,W) denotes the set of K nearest
neighbors of w i .
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Lower proximity correlates with
higher confidence and ECE.
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Distance-Aware Calibration

Textual Deviation Estimation

γ(ci ) =
P(w ′

i ,W ′)

P(w i ,W)
,

where W and W ′ denote the sets of normalized textual features for base classes.

Calibrated Inference

Ldacc (x) = γ(ĉ) · τ · sim
(
ϕ(x), ψ(t ′c)

)
,

where ĉ = argmaxc p(c | x) is the predicted class t ′c is the textual token of class c .
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Experimental Setup

Image classification datasets:

ImageNet

Caltech101

OxfordPets

StanfordCars

Flowers102

Food101

FGVCAircraft

SUN397

UCF101

DTD

EuroSAT

Compared methods:

CoOp (IJCV’22)

CoCoOp (CVPR’22)

ProDA (CVPR’22)

MaPLe (CVPR’23)

ProGrad (ICCV’23)

PromptSRC (ICCV’23)

Model architectures:

Vit-B-16 (Radford et al., 2021)
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Results on Few-shot Classification Benchmarks

ECE(↓) ACE(↓) MCE(↓) PIECE(↓)
Method Conf DAC Conf DAC Conf DAC Conf DAC

CoOp 13.84 7.00 13.76 6.91 3.80 1.71 14.71 9.02

CoCoOp 6.29 4.82 6.21 4.77 1.79 1.40 8.07 7.15

ProDA 4.27 3.99 4.35 4.08 1.27 1.32 6.57 6.35

KgCoOp 4.36 4.32 4.43 4.38 1.18 1.13 6.67 6.63

MaPLe 5.77 4.61 5.71 4.64 1.82 1.42 7.59 6.98

ProGrad 4.22 3.74 4.27 3.74 1.22 1.09 6.75 6.55

PromptSRC 3.84 3.63 3.92 3.69 1.09 1.08 6.26 6.17

Table: Average calibration performance across 11 datasets.

DAC improves open-vocabulary calibration in existing prompt tuning
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Detailed Calibration Results

Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Conf 0.00 19.24 18.86 15.87 20.42 33.28 30.30 37.84 41.60 18.57
CoOp DAC 0.00 4.95 8.17 11.33 6.51 11.42 24.12 17.41 11.37 -0.94

∆ 0.00 -14.29 -10.69 -4.54 -13.91 -21.86 -6.18 -20.43 -30.23 -19.51

Conf 0.00 0.00 -12.80 3.90 16.73 10.50 38.07 23.93 19.11 12.13
MaPLe +DAC 0.00 -3.62 -15.32 5.72 6.74 3.12 15.45 6.16 9.29 6.55

∆ 0.00 -3.62 -2.52 1.82 -10.99 -7.38 -22.62 -17.77 -9.82 -5.58

Conf 0.00 -3.82 0.14 -0.10 4.29 6.31 3.48 8.11 1.23 4.86
ProGrad +DAC 0.00 -0.71 0.03 1.30 -1.32 0.40 -0.65 -0.04 0.44 -0.34

∆ 0.00 3.11 -0.11 1.40 -5.61 -5.91 -4.13 -8.15 -0.79 -5.20

Table: Calibration results of ECE (%) across different confidence levels.

DAC significantly reduces calibration error, especially for predictions with higher
confidence.
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Results Visualization

DAC significantly reduces calibration error, especially for high-confidence
predictions.

DAC regularizes the prediction with low TD score for better calibration.
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Ablation Study

DAC is robust to the number of nearest neighbors.
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Conclusion

Problem: We find that fine-tuned VLMs generally suffer from miscalibration, and
existing post-hoc calibration methods often fail in the open-vocabulary setting.

Analysis: We empirically study the correlation between the calibration and the
textual distribution gap. We show that after prompt learning, VLMs tend to be
overconfident on classes far away from base classes.

Method: We introduce DAC, a simple and effective post-hoc calibration method
that rectifies the predicted confidence while maintaining classification accuracy.

ArXiv: https://arxiv.org/abs/2402.04655
Code: https://github.com/ml-stat-Sustech/CLIP_Calibration
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