Probabilistic Routing for Graph-Based Approximate Nearest Neighbor Search ¹Kejing Lu, ²Chuan Xiao, ¹Yoshiharu Ishikawa ¹Nagoya University, ²Osaka University

Graph-based ANNS

Advantages of Graph-based ANNS

Compared with other ANNS techniques, graph-based ANNS achieves the best tradeoff between efficiency and accuracy.

A Simple Example of Graph-based ANNS

VS Other Projection Techniques

Routing Test	#Projected Vectors	L	Code Length (Byte)
SimHash	n = 64	NA	8
RCEOs	m > 428957	L = 1	4
PEOs (opt)	m = 128	L > 2.67	4 (3+1)
PEOs	m = 128	L > 2.69	4 (3+1)

Experimental Results 5

Datasets and Benchmark Methods

Dataset	Size (\mathcal{O})	Dim. (d)	Type	Metric	FINGER: simhash-
GloVe200	1.183.514	200	Text	angular	based method

Limitations of Current Routing Strategies

Most of neighbors cannot be added into the node list. Scanning all the neighbors lacks effciency.

Partioned Extreme Order Statistics

Core Idea

By using order statistics in each orthongal subspace and combining the extreme values, we can accurately estimate the angle of each data vector to the query vector.

♦ Some Features

(1) We build a new hypothetical test to check each neighbor. (2) The proposed test is friendly to SIMD acceleration. (3) The poposed test can be combined with any graph structure.

• An Illustration of PEOs Test

GloVe300	2,196,017	300	Text	ℓ_2	RCEOs: single-spa
DEEP10M	9,990,000	96	Image	angular	ce-based method
SIFT10M	10,000,000	128	Image	ℓ_2	ScaNN. Quantizati
Tiny5M	5,000,000	384	Image	ℓ_2	
GIST	1,000,000	960	Image	ℓ_2	on -based method
DEEP100M	100,000,000	96	Image	angular	•••
					-

Performance Evaluation

3 Theoretical Analysis

• Key Parameters

m: the number of generated projected vectors. L: the number of orthogonal subspaces.

• Effect of L

Comparison of #Distance Computation

◆ Main Results

(Probabilistic Routing) Suppose that m is sufficiently large, PEOs test is $(\delta, 1-\varepsilon)$ -routing, where δ is the distance threshold and ε is the error rate.

(False Positives) As L increases moderately, the probability that false points pass the test decreases rapidly.

• Some Observations

(1) L should not be too large or too small. (2) Optimal L depends on the dimension of dataset. (3) m=128 is enough for the pratical use.

(a) DEEP10M-angular, K = 100

(b) GloVe200-angular, K = 100

(c) GloVe300- $\ell_2, K = 100$