

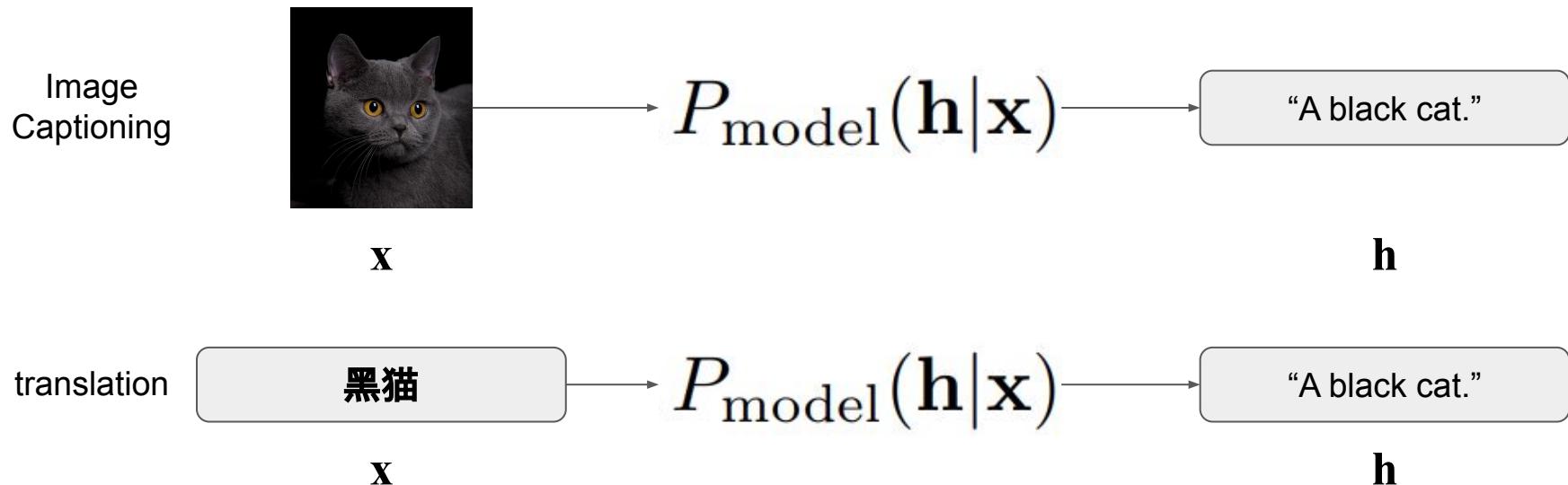
Model-Based Minimum Bayes-Risk Decoding for Text Generation

Yuu Jinnai, Tetsuro Morimura, Ukyo Honda,
Kaito Ariu, Kenshi Abe

CyberAgent AI Lab

Text generation problem

Many NLP tasks involve text generation



Beam search decoding

Beam search selects the text that maximizes the model probability
(Maximum a-posteriori estimate)

$$\mathbf{h}^{\text{MAP}} = \arg \max_{\mathbf{h} \in \mathcal{Y}} P_{\text{model}}(\mathbf{h} | \mathbf{x})$$

\mathbf{x} Input
 \mathcal{Y} All possible outputs
 \mathbf{h} Candidate output

Beam search decoding

Beam search selects the text that maximizes the model probability
(Maximum a-posteriori estimate)

$$\mathbf{h}^{\text{MAP}} = \arg \max_{\mathbf{h} \in \mathcal{Y}} P_{\text{model}}(\mathbf{h} | \mathbf{x})$$

\mathbf{x} Input
 \mathcal{Y} All possible outputs
 \mathbf{h} Candidate output

However, **sequences with the highest model probability is often a bad sequence** (Ott+18, Stahlbert+19)

Minimum Bayes Risk (MBR) Decoding (Kumar+ '04, Eikema+ '20)

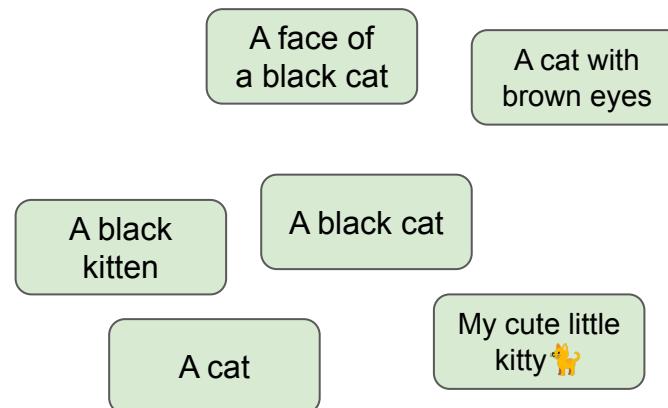
The goal is to maximize the quality of the text

Minimum Bayes Risk (MBR) Decoding (Kumar+ '04, Eikema+ '20)

The goal is to maximize the quality of the text

Prompt: “What’s in picture?”

$$P_{\text{model}}(\mathbf{h}|\mathbf{x}) \longrightarrow$$

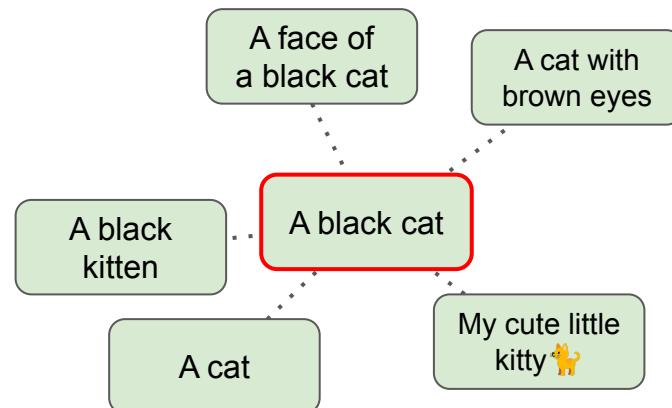


Minimum Bayes Risk (MBR) Decoding (Kumar+ '04, Eikema+ '20)

The goal is to maximize the quality of the text

Prompt: “What’s in picture?”

$$P_{\text{model}}(\mathbf{h}|\mathbf{x}) \longrightarrow$$



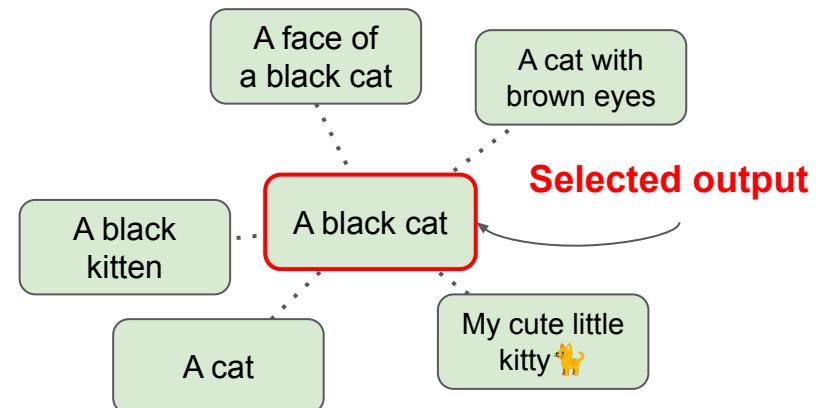
Estimate the “similarity” between the samples with $u(\mathbf{h}, \mathbf{y})$

Minimum Bayes Risk (MBR) Decoding (Kumar+ '04, Eikema+ '20)

The goal is to maximize the quality of the text

Prompt: “What’s in picture?”

$$P_{\text{model}}(\mathbf{h}|\mathbf{x})$$

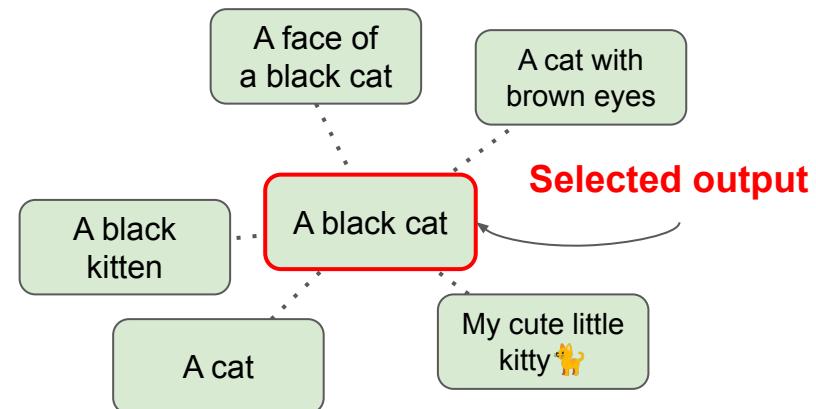


Estimate the “similarity” between the samples with $u(\mathbf{h}, \mathbf{y})$

Problem: MBR needs a lot of samples

Selecting the center point accurately requires a lot of samples

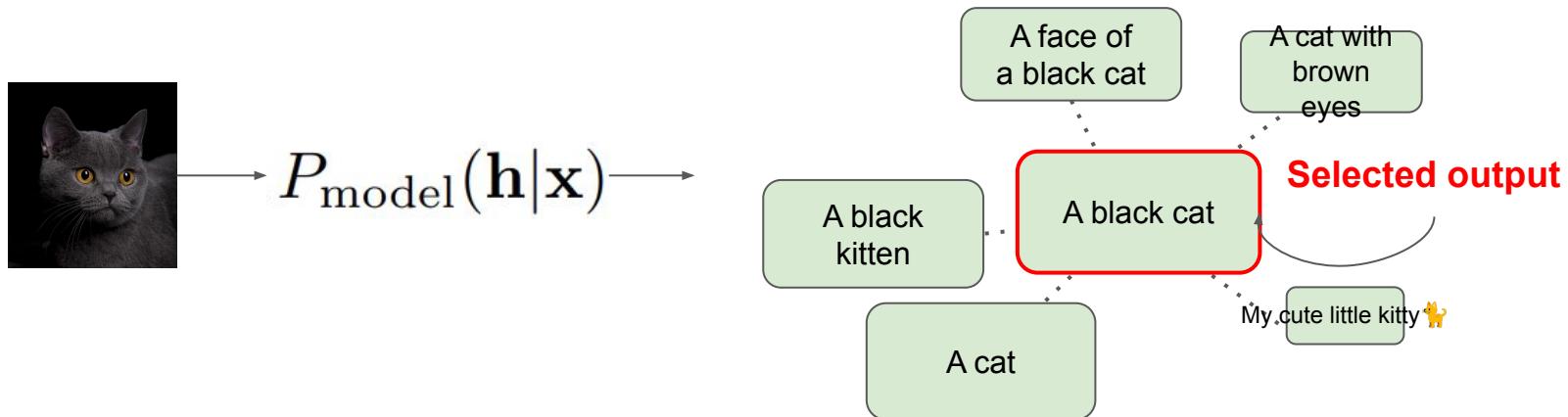
$$P_{\text{model}}(\mathbf{h}|\mathbf{x}) \longrightarrow$$



Problem: MBR needs a lot of samples

Selecting the center point accurately requires a lot of samples

→ Weight the samples according to its generation probability

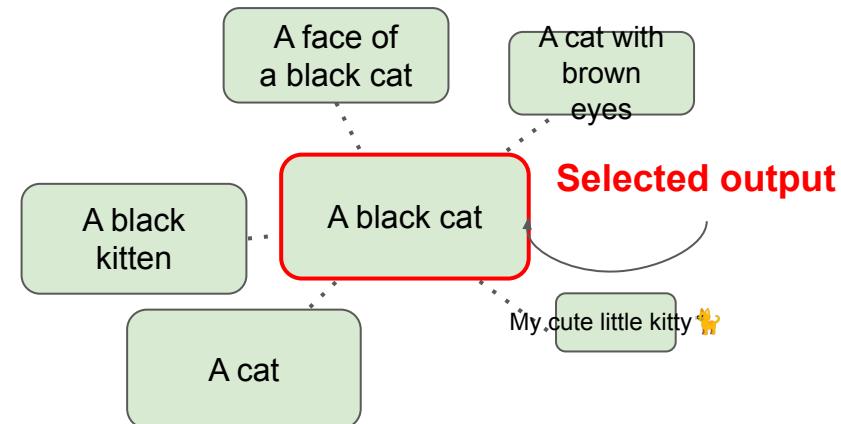


Estimate the “similarity” between the samples with $u(\mathbf{h}, \mathbf{y})$

Q. Wouldn't it increase the estimation error?

No! We can weight the samples without increasing the estimation error in expectation

1. Remove duplicated samples
2. Weight samples by $P_{\text{model}}(\mathbf{h}|\mathbf{x})$



Model-Based Minimum Bayes Risk (MBMBR) Decoding

MBR Decoding (prior work)

$$\mathbf{h}^{\text{MC}} = \arg \max_{\mathbf{h} \in \mathcal{H}_{\text{cand}}} \sum_{\mathbf{y} \in \mathcal{H}_{\text{ref}}} u(\mathbf{h}, \mathbf{y}) \cdot \hat{P}_{\text{model}}(\mathbf{y})$$

Monte-Carlo estimate

MBMBR Decoding (new!)

$$\mathbf{h}^{\text{MB}} = \arg \max_{\mathbf{h} \in \mathcal{H}_{\text{cand}}} \sum_{\mathbf{y} \in \mathcal{H}_{\text{ref}}} u(\mathbf{h}, \mathbf{y}) \cdot \underline{P}_{\text{model}}(\mathbf{y})$$

Model-based estimate

Example of MBMBR

Sampled Texts		Target	Monte Carlo Estimate	Model-Based Estimate
Text	#Occurrences	P	\hat{P}	\hat{P}_{MB}
<i>But telling the truth is not a crime.</i>	2	0.3	0.4	0.6
<i>However, telling the truth is not a crime.</i>	2	0.1	0.4	0.2
<i>But to tell the truth is not a crime.</i>	1	0.1	0.2	0.2
(All others)	0	0.5	0	0
$D_{\text{KL}}(\cdot P)$		0	0.808	0.693

Monte Carlo estimate (prior work)

$$\mathbf{h}^{\text{MC}} = \arg \max_{\mathbf{h} \in \mathcal{H}_{\text{cand}}} \sum_{\mathbf{y} \in \mathcal{H}_{\text{ref}}} u(\mathbf{h}, \mathbf{y}) \cdot \hat{P}_{\text{model}}(\mathbf{y})$$

Model-based estimate (new!)

$$\mathbf{h}^{\text{MB}} = \arg \max_{\mathbf{h} \in \mathcal{H}_{\text{cand}}} \sum_{\mathbf{y} \in \mathcal{H}_{\text{ref}}} u(\mathbf{h}, \mathbf{y}) \cdot P_{\text{model}}(\mathbf{y})$$

Error(Model-based estimate) \leq Error(Monte Carlo estimate)

Sampled Texts		Target	Monte Carlo Estimate	Model-Based Estimate
Text	#Occurrences	P	\hat{P}	\hat{P}_{MB}
<i>But telling the truth is not a crime.</i>	2	0.3	0.4	0.6
<i>However, telling the truth is not a crime.</i>	2	0.1	0.4	0.2
<i>But to tell the truth is not a crime.</i>	1	0.1	0.2	0.2
(All others)	0	0.5	0	0
$D_{KL}(\cdot P)$		0	0.808	0.693

Monte Carlo estimate (prior work)

$$\mathbf{h}^{MC} = \arg \max_{\mathbf{h} \in \mathcal{H}_{\text{cand}}} \sum_{\mathbf{y} \in \mathcal{H}_{\text{ref}}} u(\mathbf{h}, \mathbf{y}) \cdot \hat{P}_{\text{model}}(\mathbf{y})$$

Model-based estimate (new!)

$$\mathbf{h}^{MB} = \arg \max_{\mathbf{h} \in \mathcal{H}_{\text{cand}}} \sum_{\mathbf{y} \in \mathcal{H}_{\text{ref}}} u(\mathbf{h}, \mathbf{y}) \cdot P_{\text{model}}(\mathbf{y})$$

Theorem (informal)

Model-based estimate is guaranteed to be closer to the true model probability than Monte Carlo estimate measured by KL-divergence.

Error(Model-based estimate) \leq Error(Monte Carlo estimate)

Sampled Texts		Target	Monte Carlo Estimate	Model-Based Estimate
Text	#Occurrences	P	\hat{P}	\hat{P}_{MB}
<i>But telling the truth is not a crime.</i>	2	0.3	0.4	0.6
<i>However, telling the truth is not a crime.</i>	2	0.1	0.4	0.2
<i>But to tell the truth is not a crime.</i>	1	0.1	0.2	0.2
(All others)	0	0.5	0	0
<u>$D_{KL}(\cdot P)$</u>		0	0.808	0.693

?

Monte Carlo estimate (prior work)

$$\mathbf{h}^{MC} = \arg \max_{\mathbf{h} \in \mathcal{H}_{\text{cand}}} \sum_{\mathbf{y} \in \mathcal{H}_{\text{ref}}} u(\mathbf{h}, \mathbf{y}) \cdot \hat{P}_{\text{model}}(\mathbf{y})$$

Model-based estimate (new!)

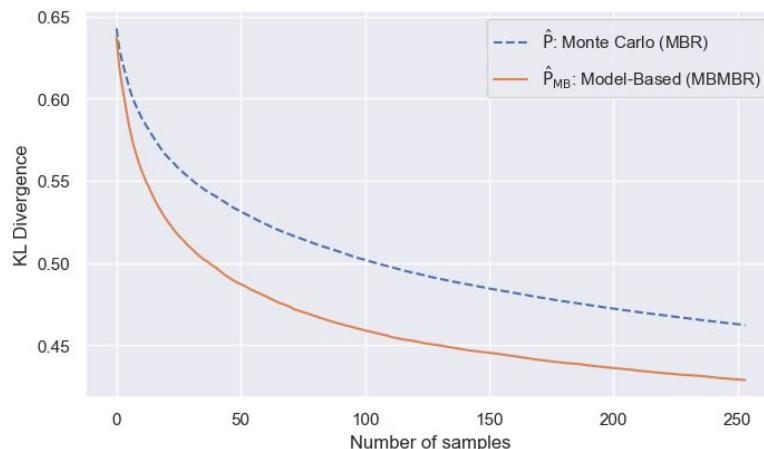
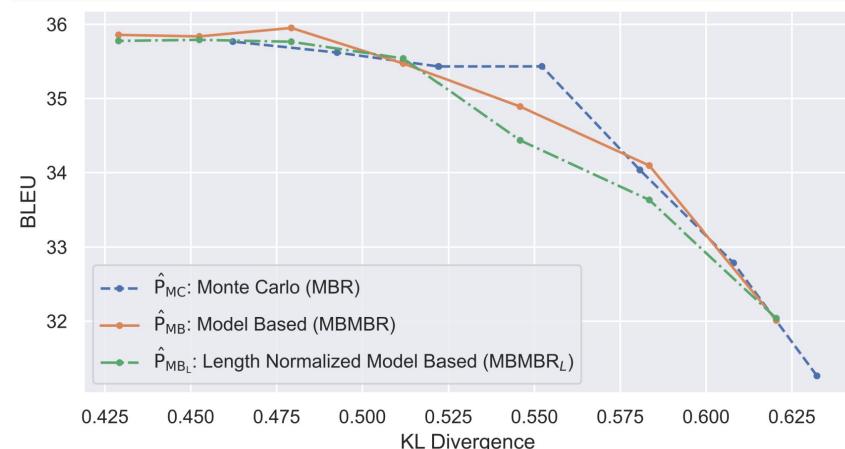
$$\mathbf{h}^{MB} = \arg \max_{\mathbf{h} \in \mathcal{H}_{\text{cand}}} \sum_{\mathbf{y} \in \mathcal{H}_{\text{ref}}} u(\mathbf{h}, \mathbf{y}) \cdot P_{\text{model}}(\mathbf{y})$$

Theorem (informal)

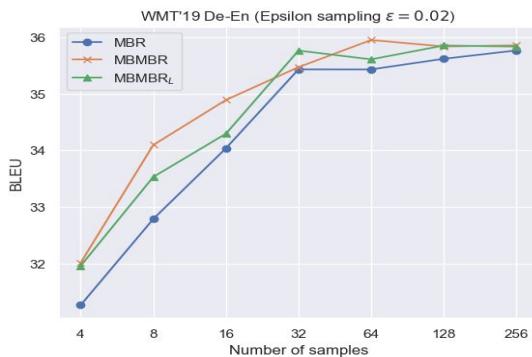
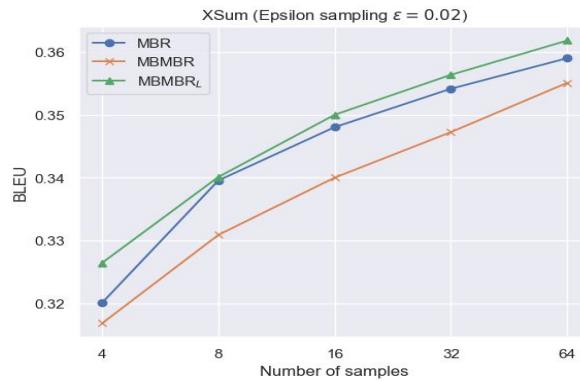
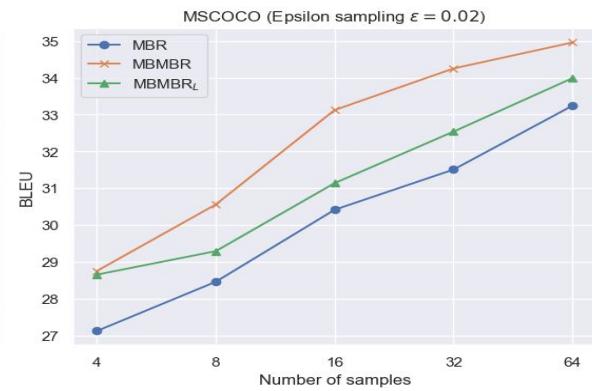
Model-based estimate is guaranteed to be closer to the true model probability than Monte Carlo estimate measured by KL-divergence.

Accuracy of the probability estimate matters

Divergence from the model probability **correlates with the text quality**



Experimental Evaluation



Machine
translation
(WMT19 De-En)

Text
summarization
(XSum)

Image
captioning
(MS COCO)

Summary

- MBMBR uses the model probability instead of Monte Carlo estimate
- MBMBR improves the estimation of the model probability which leads to improved text quality
- Experiments show that MBMBR is effective in machine translation, text summarization, and image captioning
- Implemented in mbrs (Deguchi, 2024) (pip install mbrs)

Monte Carlo estimate (prior work)

$$\mathbf{h}^{\text{MC}} = \arg \max_{\mathbf{h} \in \mathcal{H}_{\text{cand}}} \sum_{\mathbf{y} \in \mathcal{H}_{\text{ref}}} u(\mathbf{h}, \mathbf{y}) \cdot \hat{P}_{\text{model}}(\mathbf{y})$$

Model-based estimate (new!)

$$\mathbf{h}^{\text{MB}} = \arg \max_{\mathbf{h} \in \mathcal{H}_{\text{cand}}} \sum_{\mathbf{y} \in \mathcal{H}_{\text{ref}}} u(\mathbf{h}, \mathbf{y}) \cdot P_{\text{model}}(\mathbf{y})$$

