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Text generation problem

Many NLP tasks involve text generation
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Beam search decoding

Beam search selects the text that maximizes the model probability
(Maximum a-posteriori estimate)

X Input

hMAP Y’ All possible outputs

— arginax Pmodel(hlx) |
he)y h Candidate output
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Beam search decoding

Beam search selects the text that maximizes the model probability
(Maximum a-posteriori estimate)

X Input

hMAP Y’ All possible outputs

— arginax Pmodel(hlx) |
he)y h Candidate output

However, sequences with the highest model probability is often a bad
sequence (ott+18, Stahlbert+19)
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Minimum Bayes Risk (MBR) Decoding (kumar+ ‘04, Eikemas+ '20)

The goal is to maximize the quality of the text
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Minimum Bayes Risk (MBR) Decoding (kumar+ ‘04, Eikemas+ '20)

The goal is to maximize the quality of the text

Prompt: “What'’s in picture?”
[ a black cat
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Minimum Bayes Risk (MBR) Decoding (kumar+ ‘04, Eikemas+ '20)

The goal is to maximize the quality of the text

T L H P
Prompt: “What’s in picture? [ R — 1

a black cat

P
A cat with
L brown eyes

s
D

})model(h|x)—>

J

A black . [ A black cat
kitten .

: My cute little
[ A cat } kitty

Estimate the “similarity” between the samples with u(h, y) 7
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Minimum Bayes Risk (MBR) Decoding (kumar+ ‘04, Eikemas+ '20)

The goal is to maximize the quality of the text

T L H P
Prompt: “What’s in picture? [ R — 1

a black cat
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Selected output
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A black . [ A black cat
kitten .
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: My cute little
[ A cat } kitty

Estimate the “similarity” between the samples with u(h, y)
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Problem: MBR needs a lot of samples

Selecting the center point accurately requires a lot of samples
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Problem: MBR needs a lot of samples

Selecting the center point accurately requires a lot of samples

—Weight the samples according to its generation probability

A face of Acatwi
a black cat brown
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, ‘ Selected output
Pmodel (h | x) [ A black } ) [ A black cat ]\—/
kitten

- "Wy dute little kitty 4,
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Estimate the “similarity” between the samples with u(h, y) 10
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Q. Wouldn't it increase the estimation error?

No! We can weight the samples without increasing the estimation error in

expectation

1. Remove duplicated samples
2. Weight samples by Ppodel (h]x) [ Aface of ] N—

a black cat brown

.
s

Selected output
A black | Ablack cat
kitten .

- ‘My.gute little Kitty 4
A cat
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Model-Based Minimum Bayes Risk (MBMBR) Decoding

MBR Decoding (prior work)

hMC — argmax Z U(h, Y) ’ pmodel(}’)
hEHcand

YEH et Monte-Carlo estimate

MBMBR Decoding (new!)

hMB — arg max Z u(h,y) - Puodel(y)
hEHcand

Model-based estimate

12
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Example of MBMBR
Sampled Texts Target Monte Carlo Estimate Model-Based Estimate
Text #Occurrences P P PMB
But telling the truth is not a crime. p. 0.3 0.4 0.6
However; telling the truth is not a crime. 2 0.1 0.4 0.2
But to tell the truth is not a crime. 1 0.1 0.2 0.2
(Al others) 0 0.5 0 0
Dxuy(-||P) 0 0.808 0.693

Monte Carlo estimate (prior work)

hMC — arg max Z U(h, Y) : prnodel(y)
heHcana YEH ot

Model-based estimate (new!)

hMB — arg max Z u(h,y) - Puodel(y)

hEHcand yeHref 13
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Error(Model-based estimate) < Error(Monte Carlo estimate)

Sampled Texts Target Monte Carlo Estimate Model-Based Estimate
Text #Occurrences P P PMB
But telling the truth is not a crime. 2 0.3 0.4 0.6
However; telling the truth is not a crime. 2 0.1 0.4 0.2
But to tell the truth is not a crime. 1 0.1 0.2 0.2
(Al others) 0 0.5 0 0
Dk (-||P) 0 0.808 0.693
Monte Carlo estimate (prior work) / . \
Theorem (informal)
hMC = arg max u(h,y) + Puodel(y) . .
h€Heand E; o e Model-based estimate is guaranteed
. to be closer to the true model
Model-based estimate (new!) . .
N probability than Monte Carlo estimate
h™" = e i > u(h,y) Puodal(y) @easured by KL-divergence. -
E}Lcand yEHref 14
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Error(Model-based estimate) < Error(Monte Carlo estimate)

Sampled Texts Target Monte Carlo Estimate Model-Based Estimate
Text #Occurrences P P PMB
But telling the truth is not a crime. 2 0.3 0.4 0.6
However; telling the truth is not a crime. 2 0.1 0.4 0.2
But to tell the truth is not a crime. 1 0.1 0.2 0.2
(Al others) 0 0.5 0 0
Dxw(-||P) 0 0.808 0.693
?
Monte Carlo estimate (prior work) / . \
Theorem (informal)
hMC = arg max u(h,y) + Puodel(y) . .
h€Heand E; o e Model-based estimate is guaranteed
. to be closer to the true model
Model-based estimate (new!) . .
N probability than Monte Carlo estimate
h™" = e i > u(h,y) Puodal(y) @easured by KL-divergence. Y
E}Lcand yEHref 15
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Accuracy of the probability estimate matters

Divergence from the model probability correlates with the text quality
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Experimental Evaluation

XSum (Epsilon sampling £ = 0.02) MSCOCO (Epsilon sampling € = 0.02)
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summary

- MBMBR uses the model probability instead of Monte Carlo estimate

- MBMBR improves the estimation of the model probability which leads to
improved text quality

- Experiments show that MBMBR is effective in machine translation, text
summarization, and image captioning

- Implemented in mbrs (Deguchi, 2024) (pip install mbrs)

Monte Carlo estimate (prior work)

hMC — arg max Z u(h,y) - Pmodel(Y)
hEHcand yEHref

Model-based estimate (new!)

h™MB = arg max Z u(h,y) - Punodel(y)
h€Hcana




