

Cluster-Aware Similarity Diffusion for Instance Retrieval

Jifei Luo¹, Hantao Yao² and Changsheng Xu²

¹University of Science and Technology of China ²Institute of Automation, Chinese Academy of Sciences

Background

 Instance retrieval task aims to search through a large scale database to find the relevant images that share similar content.

Background

- Instance retrieval task aims to search through a large scale image database to find the relevant images that share similar content.
- However, the global descriptors may not yield out the optimal retrieval performance.

Motivation

- Here is a toy example on Swiss Roll dataset.
- The retrieval results returned by Euclidean distance and the idea retrieval results based on manifold structure.

Euclidean distance

Ideal results

Motivation

- The features of similar images are more likely to be lying on the same manifold.
- Based on this assumption, we can leverage the underlying manifold information to re-rank the initial retrieval list to achieve better performance.

Workflow

Methodology

• We first construct an affinity graph to model the underlying data manifold structure, $m W_{ij} = m 1_{ij} \exp{(-d^2(i,j)/\sigma^2)}$

where **1** is an indicator that represents which vertices are connected.

Methodology

• We introduce a novel Bidirectional Similarity Diffusion strategy and constrain the diffusion in the local cluster C explicitly.

$$\min_{\boldsymbol{F}} \ \frac{1}{4} \sum_{k=1}^{n} \sum_{i,j=1}^{n} \boldsymbol{W}_{ij} \Big(\frac{\boldsymbol{F}_{ki}}{\sqrt{\boldsymbol{D}_{ii}}} - \frac{\boldsymbol{F}_{kj}}{\sqrt{\boldsymbol{D}_{jj}}} \Big)^2 + \boldsymbol{W}_{ij} \Big(\frac{\boldsymbol{F}_{ik}}{\sqrt{\boldsymbol{D}_{ii}}} - \frac{\boldsymbol{F}_{jk}}{\sqrt{\boldsymbol{D}_{jj}}} \Big)^2 + \mu \|\boldsymbol{F} - \boldsymbol{E}\|_F^2$$

Methodology

• We introduce a novel Bidirectional Similarity Diffusion strategy and constrain the diffusion in the local cluster C explicitly.

$$\min_{\boldsymbol{F}} \ \frac{1}{4} \sum_{k=1}^{n} \sum_{i,j=1}^{n} \boldsymbol{W}_{ij} \Big(\frac{\boldsymbol{F}_{ki}}{\sqrt{\boldsymbol{D}_{ii}}} - \frac{\boldsymbol{F}_{kj}}{\sqrt{\boldsymbol{D}_{jj}}} \Big)^2 + \boldsymbol{W}_{ij} \Big(\frac{\boldsymbol{F}_{ik}}{\sqrt{\boldsymbol{D}_{ii}}} - \frac{\boldsymbol{F}_{jk}}{\sqrt{\boldsymbol{D}_{jj}}} \Big)^2 + \mu \|\boldsymbol{F} - \boldsymbol{E}\|_F^2$$

• The optimal result is equivalent to the solution of the following Lyapunov equation, which can be iteratively solved.

$$(\boldsymbol{I} - \alpha \boldsymbol{S})\boldsymbol{F} + \boldsymbol{F}(\boldsymbol{I} - \alpha \boldsymbol{S}) = 2(1 - \alpha)\boldsymbol{E}$$

Method

• To ensure the similarity consistency from instance to local neighbors, Neighborguided Similarity Smooth is further introduced to refine matrix **F**

Method

- To ensure the similarity consistency from instance to local neighbors, Neighborguided Similarity Smooth is further introduced to refine matrix **F**
- Moreover, the similarity within the local neighborhood can be aggregated to form a neighbor-enhanced representation \tilde{F} , and an extra propagation can be applied

$$\widetilde{m{F}}_i = ig(\kappa \sum_{j \in \xi[i]} m{\hat{F}}_j / |\xi| + \sum_{j \in \mathcal{N}(i,k_2)} m{\hat{F}}_j / k_2 ig) / (\kappa + 1)$$

$$oldsymbol{F}_i' = \sum_j oldsymbol{P}_{ij} \widetilde{oldsymbol{F}}_j$$

Experiments

• We conduct experiments on both *R*Oxford and *R*Paris datasets.

Method		Med	lium		Hard				
	ROxf	ROxf+1M	RPar	RPar +1 M	ROxf	ROxf+1M	RPar	RPar+1M	
R-GeM	67.3	49.5	80.6	57.4	44.2	25.7	61.5	29.8	
AQE	72.3	56.7	82.7	61.7	48.9	30.0	65.0	35.9	
αQE	69.7	53.1	86.5	65.3	44.8	26.5	71.0	40.2	
DQE	70.3	56.7	85.9	66.9	45.9	30.8	69.9	43.2	
AQEwD	72.2	56.6	83.2	62.5	48.8	29.8	65.8	36.6	
LAttQE	73.4	58.3	86.3	67.3	49.6	31.0	70.6	42.4	
kNN	71.3	54.7	83.8	63.2	49.1	29.2	66.4	36.7	
DFS	72.9	59.4	89.7	74.0	50.1	34.9	80.4	56.9	
FSR	72.7	59.6	89.6	73.9	49.6	34.8	80.2	56.7	
RDP	75.2	55.0	89.7	70.0	58.8	33.9	77.9	48.0	
EIR	74.9	61.6	89.7	73.7	52.1	36.9	79.8	56.1	
GSS	78.0	61.5	88.9	71.8	60.9	38.4	76.5	50.1	
EGT	74.7	60.1	87.9	72.6	51.1	36.2	76.6	51.3	
SSR	74.2	54.6	82.5	60.0	53.2	29.3	65.6	35.0	
CSA	78.2	61.5	88.2	71.6	59.1	38.2	75.3	51.0	
SG	71.4	53.9	83.6	61.5	49.5	28.8	67.6	35.8	
CAS	80.7	61.6	91.0	75.5	64.8	39.1	80.7	59.7	

Experiments

• We conduct experiments on both *R*Oxford and *R*Paris datasets.

Mothod	Easy		Medium		Hard		Mathad	Easy		Medium		Hard	
Method	ROxf	RPar	ROxf	RPar	ROxf	RPar		ROxf	RPar	ROxf	RPar	ROxf	RPar
MAC	47.2	69.7	34.6	55.7	14.3	32.6	R-MAC	61.2	79.3	40.2	63.8	10.1	38.2
AQE	54.4	80.9	40.6	67.0	17.1	45.2	AQE	69.4	85.7	47.8	71.1	15.9	47.9
αQE	50.3	77.8	37.1	64.4	16.3	43.0	αQE	64.9	84.7	42.8	70.8	11.4	47.8
DQE	50.1	78.1	37.8	66.5	16.0	45.7	DQE	65.5	84.9	45.3	71.9	15.5	49.1
kNN	56.6	79.7	41.6	66.5	17.4	44.5	kNN	70.6	84.6	48.9	70.2	16.0	46.1
AQEwD	52.8	79.6	39.7	65.0	17.3	42.9	AQEwD	70.5	85.9	48.7	70.7	15.3	46.9
DFS	54.6	83.8	40.6	74.0	18.8	58.1	DFS	70.0	87.5	51.8	78.8	20.3	63.5
FSR	54.4	83.9	40.4	73.5	18.4	57.5	FSR	69.7	87.3	51.4	78.1	20.1	62.6
EIR	57.9	86.9	44.2	76.8	22.2	60.5	EIR	68.0	89.4	50.8	78.7	21.7	63.3
RDP	59.0	85.2	45.3	76.3	21.4	58.9	RDP	73.7	88.8	54.3	79.6	22.2	61.3
GSS	60.0	87.5	45.4	76.7	22.8	59.7	GSS	75.0	89.9	54.7	78.5	24.4	60.5
CAS	68.6	90.1	52.9	82.3	30.4	68.1	CAS	82.6	90.0	62.5	82.5	34.1	67.4

Experiments

• Here we exhibit some quantitative reranking results on *R*Oxford dataset.

Time Complexity

- The overall time complexity of CAS is $\mathcal{O}(n^3)$.
- For tasks that require finding neighbors in a manifold space, our method can serve as a plug-in module to enhance overall performance.

Method	Time Complexity	Re-ranking Latency (ms)				
αQE	$\mathcal{O}(n^2 d)$	121				
k-recip	$\mathcal{O}(n^3)$	8,524				
DFS	$\mathcal{O}(n^3)$	1,857				
RDP	$\mathcal{O}(n^3)$	6,018				
GSS	$\mathcal{O}(n^3)$	>5 min				
CAS	$\mathcal{O}(n^3)$	1,278				

Conclusion

- Our proposed CAS effectively mitigate the negative influence from nearby manifold and achieves superior performance.
- In our future work, we plan to utilize the concept of optimal transportation and apply the inference stage within the affinity graph to fully exploit the underlying manifold information.

Cluster-Aware Similarity Diffusion for Instance Retrieval

Jifei Luo¹, Hantao Yao² and Changsheng Xu²

¹University of Science and Technology of China ²Institute of Automation, Chinese Academy of Sciences