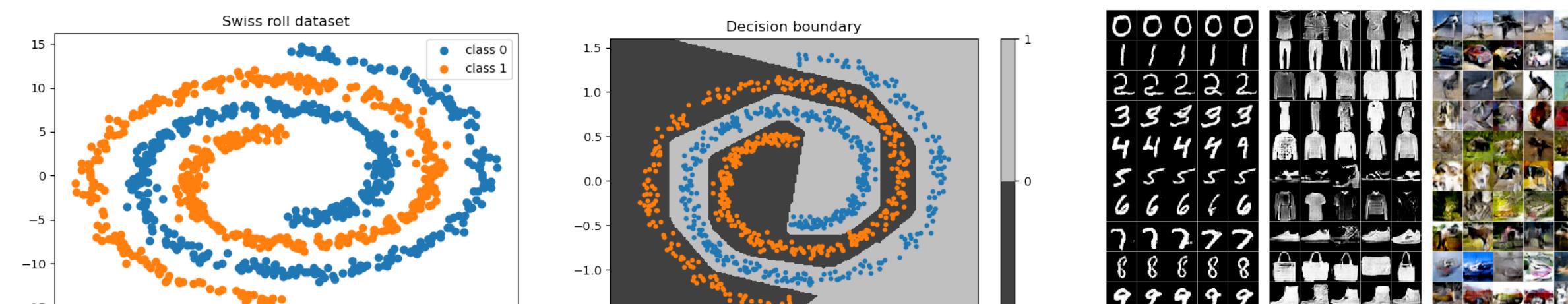


Introduction



Q1. What is the minimal / available network architecture to solve this classification problem ?

Q2. How does the geometric complexity of datasets affect the network size ?

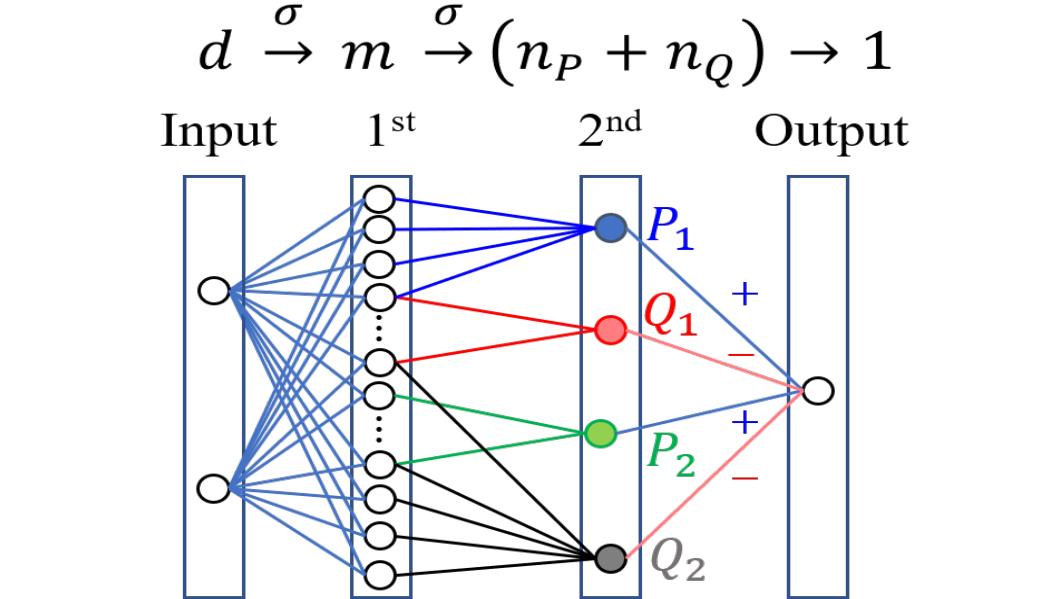
A. It can be answered through the polytope structure of the dataset.

Theory

Theoretical results : Network architectures \propto geometric complexity of training datasets

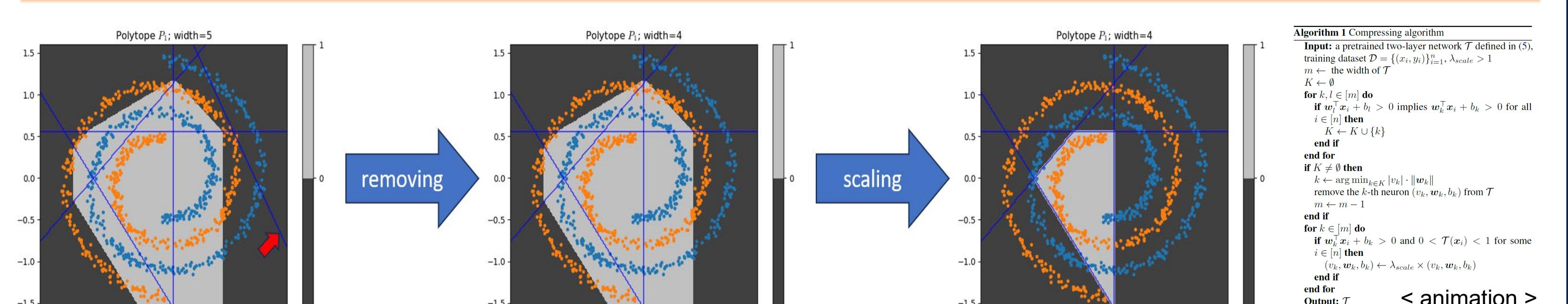
Theorem 3.4. Explicit construction of a 3-layer network.
Let \mathcal{C} be a polytope-basis cover of \mathcal{X} . Then,

$d \xrightarrow{\sigma} m \xrightarrow{\sigma} (n_P + n_Q) \rightarrow 1$ is a feasible architecture on \mathcal{X} .

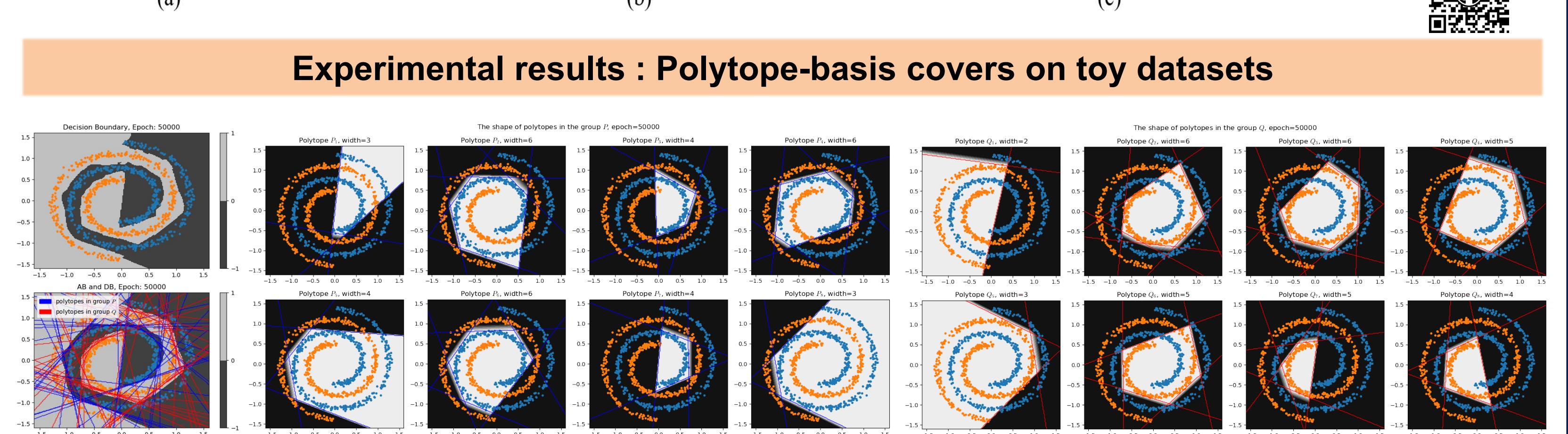


Experiments

Compressing algorithm (Algorithm 1)

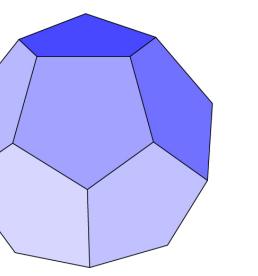


Experimental results : Polytope-basis covers on toy datasets



Background

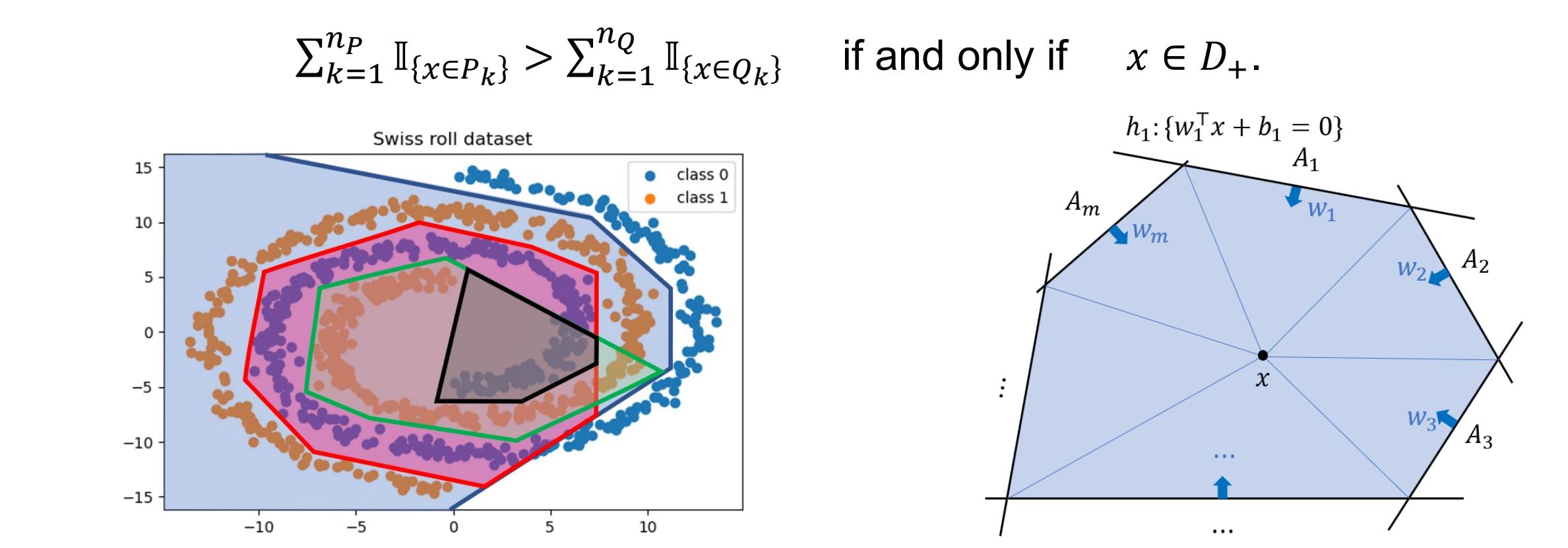
Definition. Convex polytope \mathcal{C} with m -faces.
 $\mathcal{C} := \cap_{k=1}^m \{x \in \mathbb{R}^d \mid w_k^T x + b_k \leq 0\}$



Definition. Polytope-basis cover \mathcal{C} of a dataset $\mathcal{D} = \mathcal{D}_+ \cup \mathcal{D}_-$.
A collection of polytopes
 $\mathcal{C} := \{P_1, \dots, P_{n_P}, Q_1, \dots, Q_{n_Q}\}$

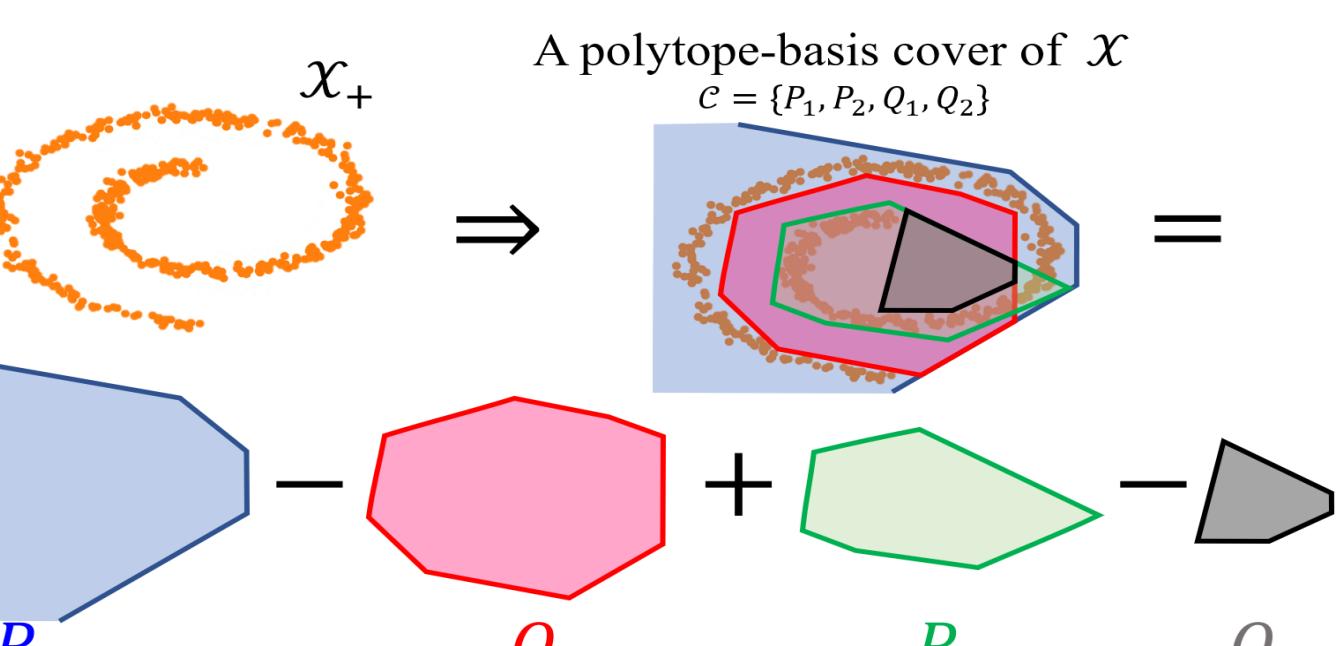
is a polytope-basis cover of \mathcal{D} if

$\sum_{k=1}^{n_P} \mathbb{I}_{\{x \in P_k\}} > \sum_{k=1}^{n_Q} \mathbb{I}_{\{x \in Q_k\}}$ if and only if $x \in \mathcal{D}_+$.



Remark. The significance of neurons.

- Neurons in the 1st layer : **hyperplane**
- Neurons in the 2nd layer : **polytopes**
- Neurons in the 3rd layer : **polytope-basis covers**



Theorem 3.5 & 3.6. Network architectures \propto network widths.

If \mathcal{X} is a simplicial J -complex consists of k faces, then $d \xrightarrow{\sigma} d_1 \xrightarrow{\sigma} \dots \xrightarrow{\sigma} k \rightarrow 1$ is a feasible architecture with

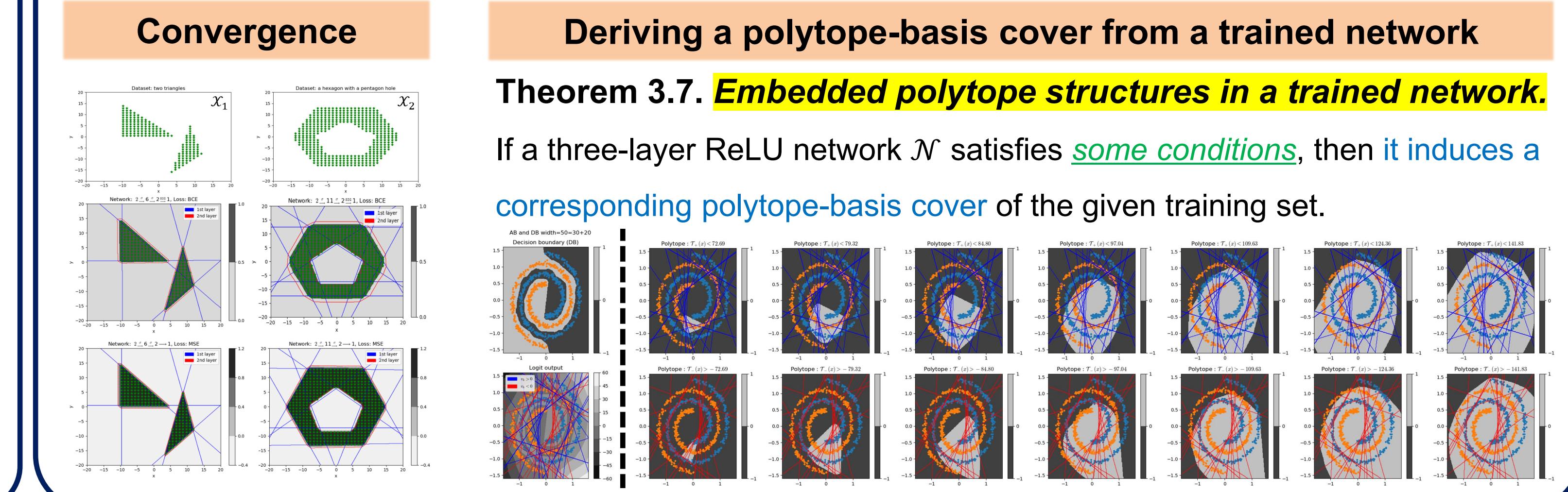
$$d_1 \leq \min \left\{ k(d+1) - (d-1) \left\lfloor \sum_{j=0}^{\lfloor \frac{d-1}{2} \rfloor} \frac{k_j}{2} \right\rfloor, (d+1) \left\lfloor \sum_{j \leq \frac{d}{2}} \left(k_j \frac{j+2}{d-j} + \frac{j+2}{j+1} \right) + \sum_{j > \frac{d}{2}} k_j \right\rfloor \right\} \approx O \left(k \frac{j+2}{d-j} + 2 \right).$$

If \mathcal{X} can be separated by disjoint prismatic polytopes, then

$$d \xrightarrow{\sigma} \left(m + 2(\beta_0 - 1) + \sum_{k=1}^d (m - 2(d-k-1))\beta_k \right) \xrightarrow{\sigma} \left(\sum_{k=0}^d \beta_k \right) \rightarrow 1$$

is a feasible architecture.

Convergence



Deriving a polytope-basis cover from a trained network

Theorem 3.7. Embedded polytope structures in a trained network.

If a three-layer ReLU network \mathcal{N} satisfies some conditions, then it induces a corresponding polytope-basis cover of the given training set.

□ Uniqueness of the polytope covers

