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Introduction

Q1. What is the minimal / available network architecture to solve this 
classification problem ?
Q2. How does the geometric complexity of datasets affect the network size ?

A. It can be answered through the polytope structure of the dataset.

Theory Experiments

Background
Definition. Convex polytope 𝐶𝐶 with 𝑚𝑚-faces.

𝐶𝐶 ≔ ∩𝑘𝑘=1𝑚𝑚 𝑥𝑥 ∈ ℝ𝑑𝑑 𝑤𝑤𝑘𝑘⊤𝑥𝑥 + 𝑏𝑏𝑘𝑘 ≤ 0 }

Definition. Polytope-basis cover 𝒞𝒞 of a dataset 𝒟𝒟 = 𝒟𝒟+ ∪ 𝒟𝒟−.
A collection of polytopes

𝒞𝒞 ≔ 𝑃𝑃1,⋯ ,𝑃𝑃𝑛𝑛𝑃𝑃 ,𝑄𝑄1,⋯ ,𝑄𝑄𝑛𝑛𝑄𝑄
is a polytope-basis cover of 𝒟𝒟 if 

∑𝑘𝑘=1
𝑛𝑛𝑃𝑃 𝕀𝕀 𝑥𝑥∈𝑃𝑃𝑘𝑘 > ∑𝑘𝑘=1

𝑛𝑛𝑄𝑄 𝕀𝕀 𝑥𝑥∈𝑄𝑄𝑘𝑘 if and only if     𝑥𝑥 ∈ 𝐷𝐷+.

Proposition 3.1 & F.6. Lower and Upper bounds for network widths.
Let 𝐶𝐶 be a convex polytope with 𝑚𝑚 faces. Then, 

𝑑𝑑→
𝜎𝜎
𝑚𝑚 → 1

is the minimum width for universal approximation. Conversely, if 𝑑𝑑→
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⋯→

𝜎𝜎
𝑑𝑑𝑘𝑘 → 1

is a feasible architecture on 𝒳𝒳, then
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if 𝑚𝑚 ≥ 2𝑑𝑑 + 1,
if 𝑚𝑚 = 2𝑑𝑑 − 1,2𝑑𝑑,
if 𝑚𝑚 < 2𝑑𝑑 − 1.

Theorem 3.4. Explicit construction of a 3-layer network.
Let 𝒞𝒞 be a polytope-basis cover of 𝒳𝒳. Then, 

𝑑𝑑→
𝜎𝜎
𝑚𝑚→

𝜎𝜎
𝑛𝑛𝑃𝑃 + 𝑛𝑛𝑄𝑄 → 1

is a  feasible architecture on 𝒳𝒳.

Remark. The significance of neurons.

• Neurons in the 1st layer : hyperplane

• Neurons in the 2nd layer : polytopes

• Neurons in the 3rd layer : polytope-basis covers

Theorem 3.5 & 3.6. Network architectures ∝ network widths.

If 𝒳𝒳 is a simplicial 𝐽𝐽-complex consists of 𝑘𝑘 faces, then 𝑑𝑑→
𝜎𝜎
𝑑𝑑1 →

𝜎𝜎
𝑘𝑘 → 1 is a feasible architecture with
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� �𝑑𝑑−1
2 𝑘𝑘𝑗𝑗

2
, 𝑑𝑑 + 1 � �∑

𝑗𝑗≤𝑑𝑑2
𝑘𝑘𝑗𝑗

𝑗𝑗+2
𝑑𝑑−𝑗𝑗

+ 𝑗𝑗+2
𝑗𝑗+1

+ ∑
𝑗𝑗>𝑑𝑑2

𝑘𝑘𝑗𝑗 ≈ 𝑂𝑂 𝑘𝑘 𝐽𝐽+2
𝑑𝑑−𝐽𝐽

+ 2 .

If 𝒳𝒳 can be separated by disjoint prismatic polytopes, then 

𝑑𝑑 →
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is a feasible architecture.

Theoretical results : Network architectures ∝ geometric complexity of training datasets

Deriving a polytope-basis cover from a trained network

Compressing algorithm (Algorithm 1)

Experimental results : Polytope-basis covers on toy datasets

Experimental results : Polytope-basis covers on real datasets (MNIST, F-MNIST, CIFAR10)

Uniqueness of the polytope covers
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Convergence
Theorem 3.7. Embedded polytope structures in a trained network.
If a three-layer ReLU network 𝒩𝒩 satisfies some conditions, then it induces a 

corresponding polytope-basis cover of the given training set.
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