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Background: LMC

Fig. 1: Illustration of spawning method and LMC [1]. 

[1] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connectivity and the lottery ticket hypothesis.

Frankle et al. [1] observed LMC for 

networks that are jointly trained for 

a short time before independent 

training (spawning method).

Linear Mode Connectivity (LMC)

Given dataset 𝐷 and two modes 𝜽𝐴, 𝜽𝐵 that Err𝐷 𝜽𝐴 = Err𝐷 𝜽𝐵
*, two mode 𝜽𝐴 and 

𝜽𝐵 satisfy the linear mode connectivity if

∀𝛼 ∈ 0, 1 , Err𝐷 𝛼𝜽𝐴 + 1 − 𝛼 𝜽𝐵 ≈ Err𝐷 𝜽𝐴
*Err𝐷(𝜽) denotes the classification error of the network 𝑓 𝜽; ⋅ on the dataset 𝐷.



Background: LLFC

Layerwise Linear Feature Connectivity (LLFC)

Given dataset 𝐷 and two modes 𝜽𝐴, 𝜽𝐵 of an 𝐿-layer neural network 𝑓, the modes 𝜽𝐴
and 𝜽𝐵 are layerwise linearly feature connected if:

∀ℓ ∈ 𝐿 , ∀𝛼 ∈ 0, 1 , ∃𝑐 > 0, 𝑠. 𝑡. , 𝑐𝑓 ℓ 𝛼𝜽𝐴 + 1 − 𝛼 𝜽𝐵 = 𝛼𝑓 ℓ 𝜽𝐴 + 1 − 𝛼 𝑓 ℓ 𝜽𝐵 .

𝑓 ℓ (𝛼𝜽𝐴 + 1 − 𝛼 𝜽𝐵; 𝑿) 𝑓 ℓ (𝜽𝐴; 𝑿) 𝑓 ℓ (𝜽𝐵; 𝑿)

𝛼 +(1 − 𝛼)∝



Background: LLFC connects to LMC

LLFC always co-occurs with LMC in practice

Fig. 2: Comparison of 𝐸𝐷[1 − cosine𝛼(𝒙𝑖)]
* and 𝐸𝐷[1 − cosine𝐴,𝐵(𝒙𝑖)]

*, 𝛼 ∈ {.25, .5, . 75}. 

*cosine𝛼 𝒙𝑖 = cos⟨𝑓 ℓ 𝛼𝜃𝐴 + 1 − 𝛼 𝜃𝐵; 𝒙𝑖 , 𝛼𝑓
ℓ 𝜃𝐴; 𝒙𝑖 + 1 − 𝛼 𝑓 ℓ (𝜃𝐵; 𝒙𝑖)⟩ and cosine𝐴,𝐵 𝒙𝑖 = cos⟨𝑓 ℓ 𝜃𝐴; 𝒙𝑖 , 𝑓

ℓ (𝜃𝐵; 𝒙𝑖)⟩

Lemma (LLFC implies LMC)

Two modes 𝜽𝐴, 𝜽𝐵 satisfy LLFC over dataset 𝐷 and max Err𝐷 𝜽𝐴 , Err𝐷 𝜽𝐵 ≤ 𝜖, then 

∀𝛼 ∈ 0, 1 , Err𝐷 𝛼𝜽𝐴 + 1 − 𝛼 𝜽𝐵 ≤ 2𝜖.



Pretraining-Finetuning Paradigm

*Fine-tuning can be done on the parameters of original neural network, or on “adaptors” consist of far fewer parameters than the original model. We focus on the former case.

Are finetuned models linearly connected in loss landscape or 

feature space?

Intuition: Finetuning shares similar training regime with the spawning method.
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Cross-Task Linearity

LMC fails, LLFC holds.

Indeed, a stronger version of LLFC is observed, called Cross-Task Linearity (CTL). Given a 

pair of finetuned models 𝜽𝑖 , 𝜽𝑗 ∈ Θ2 and downstream tasks 𝐷𝑖 and 𝐷𝑗 respectively, we 

say them satisfy CTL on 𝐷𝑖 ∪ 𝐷𝑗 if

∀ℓ ∈ 𝐿 , ∀𝛼 ∈ 0, 1 , 𝑠. 𝑡. , 𝑓 ℓ 𝛼𝜽𝑖 + 1 − 𝛼 𝜽𝑗 ≈ 𝛼𝑓 ℓ 𝜽𝑖 + 1 − 𝛼 𝑓 ℓ 𝜽𝑗 .

Conjecture (Transitivity of CTL.)

Given models 𝜽𝑖 , 𝜽𝑗 , 𝜽𝑘 . We have 𝜽𝑖 , 𝜽𝑘 satisfy CTL if 𝜽𝑖 , 𝜽𝑗 and 𝜽𝑗 , 𝜽𝑘 satisfy CTL.

We can further apply CTL to explain Model Soup [6] and Task Arithmetic [6].

[5] Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, 
Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time.
[6] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt, Hannaneh Hajishirzi, Ali Farhadi. Editing Models with Task Arithmetic.



Insights into Model Averaging

Model Averaging (Uniform Model Soup)
Considering a set of models Θ = 𝜽𝑖 𝑘 that started from 𝜽𝑃𝑇 and finetuned on the same 
task 𝐷𝐹𝑇 but with different hyperparameter configuration, model averaging is defined as 

𝑓
1

𝑘


𝑖=1

𝑘

𝜽𝑖 .

Connect model averaging and model ensemble
A finer-grained characterization of the linear correlation between model averaging and 
logits ensemble is observed.

𝑓 ℓ
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𝑖=1
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1
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𝑓 ℓ 𝜽𝑖 , ∀ℓ ∈ 𝐿 .



Insights into Model Averaging

Theorem (CTL generalizes to multiple models.)

Given dataset 𝐷 and a set of modes Θ where each pair of models 𝜽𝑖 , 𝜽𝑗 ∈ Θ2 satisfies 

CTL on 𝐷, assuming transitivity of CTL, then for any 𝜽𝑖 𝑖=1
𝑘 ∈ Θ and 𝛼𝑖 𝑖=1

𝑘 ∈ [0,1], 
subject to the constraint that σ𝑖=1

𝑘 𝛼𝑖 = 1,

𝑓 ℓ 

𝑖=1

𝑛

𝛼𝑖𝜽𝑖 =

𝑖=1

𝑛

𝛼𝑖𝑓
ℓ 𝜽𝑖 , ∀ℓ ∈ 𝐿 .

The connection between model averaging and ensemble can be viewed as a 
generalization of CTL to the case of multiple models in the pretraining-
finetuning paradigm.



Insights into Task Arithmetic

Task Arithmetic
Considering a set of modes Θ = 𝜽𝑖 𝑘 that started from 𝜽𝑃𝑇 but finetuned on different 
tasks 𝐷𝑖 𝑘, task vector 𝜏𝑖 𝑘 is defined as 𝜏𝑖 = 𝜽𝑖 − 𝜽𝑃𝑇. Arithmetic operations can be 
applied to task vectors to construct 𝜏𝑛𝑒𝑤 and 𝜏𝑛𝑒𝑤 can be applied to 𝜽𝑃𝑇, i.e.,

𝑓 𝜽𝑃𝑇 + 𝜆𝜏𝑛𝑒𝑤 .

CTL explains learning via addition.
𝑓 𝜽𝑃𝑇 + 𝜆(𝜏𝑖+𝜏𝑗) demonstrate abilities on both 𝐷𝑖 and 𝐷𝑗 . As CTL holds (verified 
empirically), ∀ℓ ∈ 𝐿 , 

𝑓(ℓ) 𝜽𝑃𝑇 + 𝜆(𝜏𝑖+𝜏𝑗) ≈
1

2
𝑓 ℓ 𝜽𝑃𝑇 + 2𝜆𝜏𝑖 +

1

2
𝑓 ℓ 𝜽𝑃𝑇 + 2𝜆𝜏𝑗 .

Addition over parameter space can be transformed to feature space.



Insights into Task Arithmetic

CTL explains forgetting via negation.
𝑓 𝜽𝑃𝑇 − 𝜆𝜏𝑖 loses ability on 𝐷𝑖 while retains performance elsewhere. As CTL holds 
(verified empirically), 

𝑓(ℓ) 𝜽𝑃𝑇 ≈
1

2
𝑓 ℓ 𝜽𝑃𝑇 − 𝜆𝜏𝑖 +

1

2
𝑓 ℓ 𝜽𝑃𝑇 + 𝜆𝜏𝑗 .

We rewrite it as
𝑓(ℓ) 𝜽𝑃𝑇 − 𝜆𝜏𝑖 ≈ 𝑓 ℓ 𝜽𝑃𝑇 − Δ ℓ 𝜆𝜏𝑖 ,

where Δ ℓ 𝜆𝜏𝑖 = 𝑓 ℓ 𝜽𝑃𝑇 + 𝜆𝜏𝑗 − 𝑓 ℓ 𝜽𝑃𝑇 . Intuitively, Δ ℓ 𝜆𝜏𝑖 encode the 
information specific to task 𝐷𝑖.

Negation over parameter space can be transformed to feature space.



Unveiling the Root Cause of CTL

Factors Contributing to CTL (Highlight the role of pretraining).

Fig. 3: The impact of the task similarity (left) /number of pretraining and finetuning epochs 
(right) on the emergence of CTL. 



Unveiling the Root Cause of CTL

Theorem (The Emergence of CTL.)
Suppose f 𝜽 : 𝑅𝑝 ↦ 𝑅 is third-differentiable function in an open convex set Θ and its 
Hessian norm at 𝜽0 is bounded by 𝜆𝑚𝑖𝑛 ≤ |∇2𝑓 𝜽0 | ≤ 𝜆𝑚𝑎𝑥, then

|𝑓 𝛼𝜽𝑖 + 1 − 𝛼 𝜽𝑗 − 𝛼𝑓 𝜽𝑖 − 1 − 𝛼 𝑓 𝜽𝑗 | ≤
𝛼 1 − 𝛼 𝜆𝑚𝑎𝑥

2
||𝜽𝑖 − 𝜽𝑗||

2 + 𝜖,

Where 𝜖 = 𝑂(max(||𝛼𝜽𝑖 + 1 − 𝛼 𝜽𝑗 − 𝜽0||
3, 𝛼||𝜽𝑖 − 𝜽0||

3, 1 − 𝛼 ||𝜽𝑗 − 𝜽0||
3)) is the 

higher order term.

Remarks:
• The emergence of CTL is related to the flatness of the function landscape and 

distance between two finetuned models. 
• Instead of linearizing models, we provide a more realistic setting.



Thank you!
Q&A
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