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Background: LMC

Linear Mode Connectivity (LMC)
Given dataset D and two modes 84, 05 that Errp(8,) = Errp(03)*, two mode 64 and
O satisfy the /inear mode connectivity if

Va € [0,1],Errp(a@4 + (1 — @)0g) = Errp(0,)

*Errp (@) denotes the classification error of the network f(8; -) on the dataset D.
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sV, Frankle et al. [1] observed LMC for
networks that are jointly trained for
A\ /‘\ a short time before independent
Wl A . W2 Wl A I W2 . .
T';nstabﬂity' T T°Instabﬂity° T training (spawning method).

Fig. 1: lllustration of spawning method and LMC [1].

[1] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode connectivity and the lottery ticket hypothesis.



Background: LLFC

Layerwise Linear Feature Connectivity (LLFC)
Given dataset D and two modes 84, 85 of an L-layer neural network f, the modes 04
and Og are layerwise linearly feature connected if:

ve € [L],Va €[0,1],3c > 0,s.t.,cfO (a8, + (1 —a)0p) = af D0, + (1 — a)fD(0p).
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Background: LLFC connects to LMC

LLFC always co-occurs with LMC in practice
ResNet20 (32 x) on CIFAR-10 (Weight Matching)
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Fig. 2. Comparison of Ep|[1 — cosine,(x;)]" and Ep[1 — cosiney g(x;)]", @ € {.25,.5,.75}.

Lemma (LLFC implies LMC)
Two modes 8y, 05 satisfy LLFC over dataset D and max{Err,(6,),Errp(05)} < €, then

Va € [0,1],Errp (a0, + (1 — a)0p) < 2e.

*cosineq (x;) = cos(f P (ab, + (1 — a)b; x), af P (0,;x;) + (1 — @) f P (85; x;)) and cosine, 5(x;) = cos(f D (0,; x;), D (05; %))



Pretraining-Finetuning Paradigm

Intuition: Finetuning shares similar training regime with the spawning method.

Spawning Pretraining-Finetuning
® 9" ® oY
D = {(xi' yi)}?=1l DPT
® gk ®0p
D D; D;
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Are finetuned models linearly connected in loss landscape or
feature space?

“Fine-tuning can be done on the parameters of original neural network, or on “adaptors” consist of far fewer parameters than the original model. We focus on the former case.



Cross-Task Linearity

LMC fails, LLFC holds.
Indeed, a stronger version of LLFC is observed, called Cross-T7ask Linearity (CTL). Given a
pair of finetuned models (8, 6;) € ©% and downstream tasks D; and D; respectively, we
say them satisfy CTL on D; U D; if

v{ € [L],Va € [0,1],s. t.,f(‘))(aei + (1 — a)Bj) ~af D0+ (1 - a)f(f)(ej).

Conjecture (Transitivity of CTL.)
Given models 8;,0;,0;. We have (0;, 8;) satisfy CTL if (8;,0;) and (8;, ) satisfy CTL.

We can further apply CTL to explain Mode/ Soup [6] and Task Arithmetic [6].

[5] Mitchell Wortsman, Gabriel llharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith,
Ludwig Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time.
[6] Gabriel llharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt, Hannaneh Hajishirzi, Ali Farhadi. Editing Models with Task Arithmetic.



Insights into Model Averaging

Model Averaging (Uniform Model Soup)
Considering a set of models ® = {8}, that started from @p and finetuned on the same

task Dpr but with different hyperparameter configuration, model averaging is defined as

Connect model averaging and model ensemble
A finer-grained characterization of the linear correlation between model averaging and

logits ensemble is observed.
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Insights into Model Averaging

Theorem (CTL generalizes to multiple models.)

Given dataset D and a set of modes © where each pair of models (8, 0;) € ©? satisfies
CTL on D, assuming transitivity of CTL, then for any {8;}; € © and {a;}; € [0,1],
subject to the constraint that Y&, a; = 1,

f (2 aiei> =) af@®),vee L,

i=1 =1

The connection between model averaging and ensemble can be viewed as a
generalization of CTL to the case of multiple models in the pretraining-
finetuning paradigm.



Insights into Task Arithmetic

Task Arithmetic
Considering a set of modes © = {0;} that started from @ pr but finetuned on different

tasks {D; }x, task vector {t;} is defined as t; = @; — @py. Arithmetic operations can be
applied to task vectors to construct Tpew and Tpeyw Can be applied to Bpr, i€,

f(@pr + ATpew).

CTL explains learning via addition.

f(HpT + A(Ti+rj)) demonstrate abilities on both D; and D;. As CTL holds (verified
empirically), V€ € [L],

1 1
fOOpr + A(ti+7))) = Ef({))(ePT +247;) + if({))(BPT +221;).

Addition over parameter space can be transtormed to feature space.



Insights into Task Arithmetic

CTL explains forgetting via negation.

f(Bpr — A1;) loses ability on D; while retains performance elsewhere. As CTL holds
(verified empirically),

fP(0pr) = %f({))(ePT — A1) + %f({))(BPT + ATj)-
We rewrite It as
f({)) (Opr — A7;) = f({)) (Opr) — A (Aty),
where AY (A1) = FD(0pr + A1;) — FO(Opr). Intuitively, A® (A7;) encode the
Information specific to task D;.

Negation over parameter space can be transformed to feature space.



Unvelling the Root Cause of CTL

Factors Contributing to CTL (Highlight the role of pretraining).
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Fig. 3: The impact of the task similarity (left) /number of pretraining and finetuning epochs
(right) on the emergence of CTL.



Unvelling the Root Cause of CTL

Theorem (The Emergence of CTL.)
Suppose f(0): RP — R is third-differentiable function in an open convex set ® and its
Hessian norm at @, is bounded by Ayin < |V2f(00)| < Amax, then

a(l—a)l
f(ab; + A - a)6;) — af (8) — 1 - a)f (6))| S ————110; = §;” + €,
Where € = O(max(||a8; + (1 — a)8; — 0,]|°, a||0; — 6,|[>, (1 — a)||0; — 6,||*)) is the

higher order term.

Remarks:

* The emergence of CTL is related to the flatness of the function landscape and
distance between two finetuned models.

* /nstead of linearizing models, we provide a more realistic setting.



Thank you!
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