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Data-Adaptive Aggregation

* Impact: Congenital heart defects (CHD) are the most common birth
defects in the US.

= Data Source: STS-CHSD database. We focused on Norwood
surgeries performed from 2016-2022.

= Outcome: Post-surgery length of stay (LOS) in hospital.

= Observations: There were 3,45/ observations with a median LOS of
40 days (min: 2, max: 183), with 752 (21.2%) missing LOS values.

* Goal: For a new patient who arrives at the hospital, can we provide a
conformal prediction interval[2] C(x) that will contain the true LOS
with some pre-specified coverage level 1 — «a:

P(Y e C(X))>1-a.
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Figure 1. Prediction intervals for hospital LOS for a randomly selected patient across miscoverage levels
a=40.1,0.2,0.3,0.4,0.5} and conformal scores € {ASR, local ASR, CQR}.

Notation and Set-up

= Data from K sites. Let T' € {0,1, ..., K — 1} denote study sites. T = 0 indicates the target site, and
the rest are source sites.

= R is an indicator for observing outcome Y: R =1if Y is observed, R = 0 if missing.
= Data: random sample of n i.i.d. copies of O = (X, T, R, RY) ~ P.

= Assumption 1 (Missing at random [MAR]). R L Y | T, X.

= Assumption 2 (Positivity). Fore > 0,P(R=1|T, X) > e with probability 1.

= Two important goals of conformal inference:

= Distribution-free: valid in finite samples for any (X, Y') and any predictive algorithm.
= Efficient: to minimize width of interval C'(X).
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Given the set-up, our goal is to construct prediction intervals @(X), a € (0,1), such that
P(Y € Co(X) | T=0,R=0)>1—a.

Predictions tailored for missing outcomes in the target site with marginal coverage guarantees.
Introduce a conformal score, S(X,Y). Predictions: Co(X)={y e R: S(X,y) <7}

r estimates rg = ro(a)(PP), the (1 — a)-quantile of S(X,Y).

Under MAR, rq is identified by the following equation, using target site data only:

1 —a=PS(X,Y)<r)|T=0,R=0)=EPS(X,Y)<ry | T=0,X,R=1)|T=0,R=0).

= Common Conditional Outcomes Distribution (CCOD) in Multi-Source Data.
if the CCOD holds, we propose the following efficient influence function (IF)[3] of r¢g = rg(a)(IP):

I(T = 0)(1 = R){m(rg, X) = (1 — o)} + Rij( X )qo(X) { I(S(X,Y) < rg) — m(ro, X)}
= -0 m9,m, 7], ),
where
=m(r, X)=P(S(X,Y) <r| X,R=1)is the global CDF of the conformal score,
= X)=P(R=0| X)/P(R=1| X) is the global missingness risk ratio,
= and qo(X) =P|T =0 | X, R = 0] is the target-site propensity.
= However, it will often be unreasonable to assume that the CCOD in practice...
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Figure 2. The Proposed Robust Algorithm for Heterogeneous Conditional Outcomes in Multi-Source Data.

For a source site k, the IF of rg is given by

= Dol X) = (1 = )]+ T =2 by (X)X, Y) <o) - |
= g (O; 70, Mo, My, W ) S
where

|
)

p X |T=0,R=0). . .
= and X)= 'S a density ratio.
ol X) = X T =k R=1) /
* Limited data sharing: data sharing only comes from the estimation of the density ratio wy, . This
can be done with the passing of only coarse summary statistics|1].

First compute the discrepancy measures Y7 = (7 — 7).

Next solve for federated weights w = (wp, wy, . .., Wx_1) that minimize the following loss:
B K-—1 27 | K-—1
Q(w) =P |{ o O:F o )~ 3 wn gelOusfo i e B | | +70 3 ol
2 Target IF k=1 Source |F _ k=1

subjectto 0 <wg < 1, forallk € {0,1,..., K — 1}, and Zéi‘ol wy. = 1, and A is a tuning parameter

chosen by cross-validation.
K—1 ~ ~

Then compute 7 o4 as the weighted average of the site-specific quantiles: 7 feq = > 1.y WiT-

Finally, the federated prediction interval is defined as C/¢4(X) = {y e R : S(X,y) < T0.fed )

Numerical Experiments
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Figure 3. Results by one representative case of in total 162 scenarios of our simulation. We varied: sample sizes ny, levels
of covariate shift, types of outcome errors, levels of concept (outcome) shift, and conformal scores. This case: K = 5 sites,
n; = 1000 for k =0, ..., 4, strongly heterogeneous covariate shift, heteroskedasticity, and strong violation of CCOD.

Concluding Remarks

= We proposed a method to obtain valid prediction intervals for missing outcome data in a target

site while exploiting information from multiple potentially heterogeneous sites.

= Marginal coverage properties of conformal prediction methods and builds on modern

semiparametric efficiency theory and federated learning for more robust and efficient uncertainty
quantification.

= Future research: Covariate-adaptive ensemble weights for aggregating information — oracle

efficiency. Toward different notions of conditional coverage, etc.
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