

Subhojoyoti Mukherjee\*, Josiah P. Hanna, Robert Nowak

## Problem Setting and Contributions

In off-policy RL we evaluate a target policy on a pre-collected dataset before deploying it in real-world. This dataset is collected using a different behavior policy. Recent works in policy evaluation for RL assumes a fixed or adaptive behavior policy that generates data to evaluate a particular target policy. In our work, we study the optimal choice for such adaptive behavior policy under safety constraints and introduce a method that can learn the optimal behavior policy during data collection.

### Contributions:

- 1) We show that there exists a class of intractable MDPs where no safe algorithm can efficiently collect data and satisfy the safety constraints
- 2) We define the tractability condition for an MDP such that a safe oracle algorithm can efficiently collect data and using that we prove the first lower bound for this setting
- 3) We introduce algorithm SaVeR that approximates a safe oracle algorithm and bound the finite-sample mean squared error of the algorithm while ensuring it satisfies the safety constraint.

## Safety Constraints for Policy Evaluation

Our objective is to determine a sequence of behavior policies,  $\{\mathbf{b}_1, \dots, \mathbf{b}_K\}$ , that will produce a set of  $K$  episodes that lead to the most accurate estimate of  $V^\pi(s_1)$  subject to the constraint that the cumulative expected constraint-value  $V_c^\mathbf{b}(s_1)$  always exceeds a fixed percentage of  $V_c^{\pi_0}(s_1)$ . We consider the objective:

$$\begin{aligned} & \min_{\mathbf{b}} \mathbb{E}_{\mathcal{D}} \left[ (Y_n^\pi(s_1) - V^\pi(s_1))^2 \right] \\ & \text{s.t. } \sum_{k'=1}^k V_c^{\mathbf{b}^{k'}}(s_1) \geq (1 - \alpha) k V_c^{\pi_0}(s_1) \text{ for all } k \in [K] \end{aligned}$$

where  $Y_n^\pi(s_1)$  is our estimate of  $V^\pi(s_1)$ ,  $\alpha \in (0, 1]$  is the risk parameter, and the expectation is over the collected data set  $\mathcal{D}$ . We also make the following simplifying assumption.

## Tractability condition for Policy Evaluation

Define  $V_{\mathbf{b}^-}(s_1)$  as the value of worst case behavior policy  $\mathbf{b}^-$  that suffers a cost value that is lower than any other behavior policy  $\mathbf{b}$ . So this policy  $\mathbf{b}^-$  can be thought of as the worst possible behavior policy that can be followed by the agent during an episode. Then the tractability condition states that

$$\text{MDP complexity dependent budget} \rightarrow \sqrt{n} \geq \frac{\frac{1}{\alpha} \left( 1 - \frac{V_{\mathbf{b}^-}(s_1)}{V_{\pi_0}(s_1)} \right)}{\frac{C_\sigma}{\alpha} \left( 1 - \frac{V_{\mathbf{b}^-}(s_1)}{V_{\pi_0}(s_1)} \right) - 1}$$

where  $C_\sigma \in (0, 1)$  is a MDP dependent parameter that depends on the reward variance of state-action pairs.

\*Subhojoyoti Mukherjee is looking for full time position in industry from Fall 2024

# We lower the MSE of policy evaluation in MDPs with an adaptive behavior policy under safety constraints

## Safe Variance Reduction (SaVeR)

1) In real world setting the variances are unknown.

2) SaVeR uses plug-in estimates of the variances for oracle policy  $\mathbf{b}^*$  defined by

$$\mathbf{b}_*^k = \begin{cases} \mathbf{b}_*, & \text{if } \hat{Z}_L^{k-1} \geq 0, k > \sqrt{K} \\ \pi_0, & \text{if } \hat{Z}_L^{k-1} < 0 \\ \pi_x, & \text{if } \hat{Z}_L^{k-1} \geq 0, k \leq \sqrt{K} \end{cases} \quad (6)$$

$$\hat{\mathbf{b}}^k = \begin{cases} \hat{\mathbf{b}}_*^k & \text{if } \hat{Z}_L^{k-1} \geq 0, k > \sqrt{K} \\ \pi_0 & \text{if } \hat{Z}_L^{k-1} < 0 \\ \pi_x & \text{if } \hat{Z}_L^{k-1} \geq 0, k \leq \sqrt{K} \end{cases} \quad (8)$$

4) Use UCB to introduce exploration

5) Keeps safety budget  $\hat{Z}_L^{k-1}$  and explores when safety budget is sufficiently high

### Algorithm 1 Safe Variance Reduction (SaVeR) for $\mathcal{T}$

1: **Input:** Risk Parameter  $\alpha > 0$ , target policy  $\pi$ .  
 2: **Output:** Dataset  $\mathcal{D}$ .  
 3: Initialize  $\mathcal{D} = \emptyset$ ,  $\hat{\mathbf{b}}_1(a|s)$  uniform over all actions.  
 4: **for**  $k = 1, 2, \dots, K$  **do**  
 5:   **for**  $\ell = 1, 2, \dots, L$  **do**  
 6:     Get  $\mathcal{H}^k := \{S_\ell^k, A_\ell^k, R(S_\ell^k, A_\ell^k), C(S_\ell^k, A_\ell^k)\}_{\ell=1}^L$  by selecting  $\mathbf{b}^k$  according to (8).  
 7:      $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathcal{H}^k, \hat{\mathbf{b}}^k)\}$   
 8:     Update model parameters and estimate  $\hat{\mathbf{b}}_1^{k+1}(a|s)$  for each  $s, a$   
 9:   **end for**  
 10: **end for**  
 11: **Return** Dataset  $\mathcal{D}$  to evaluate policy  $\pi$ .

$$\mathbf{b}_*(a|s_i^\ell) \propto (\pi^2(a|s_i^\ell) \sigma^2(s_i^\ell, a) + \sum_{s_j^{i+1}} P(s_j^{i+1}|s_i^\ell, a) M^2(s_j^{i+1}))^{\frac{1}{2}} \quad (4)$$

$$\begin{aligned} \text{where, } M(s_i^\ell) & \text{ is the normalization factor defined as follows:} \\ M(s_i^\ell) &= \sum_a (\pi^2(a|s_i^\ell) \sigma^2(s_i^\ell, a) + \sum_{s_j^{i+1}} P(s_j^{i+1}|s_i^\ell, a) M^2(s_j^{i+1}))^{\frac{1}{2}}. \end{aligned} \quad (5)$$

## Regret of SaVeR

Define the regret as  $\bar{\mathcal{R}}_n = \mathcal{L}_n(\pi, \hat{\mathbf{b}}^k) - \bar{\mathcal{L}}_n^*(\pi, \mathbf{b}_*)$  where  $\bar{\mathcal{L}}_n^*(\pi, \mathbf{b}_*)$  is the upper bound to the safe oracle MSE.

Define the constraint regret as follows:  $\bar{\mathcal{R}}_n^c = \mathcal{C}_n(\pi, \hat{\mathbf{b}}^k) - \bar{\mathcal{C}}_n^*(\pi, \mathbf{b}_*)$  where  $\bar{\mathcal{C}}_n^*(\pi, \mathbf{b}_*)$  is the upper bound to the oracle constraint viola-

**Corollary 1** Under Tractability condition, the constraint regret of SaVeR is bounded by  $\bar{\mathcal{R}}_n^c \leq O\left(\frac{\log(n)}{n^{1/2}}\right)$  and the regret is bounded by  $\bar{\mathcal{R}}_n \leq O\left(\frac{\log(n)}{n^{3/2}}\right)$ .

- 1) The regret of SaVeR matches the regret in the unconstrained MDP setting [1, 2] under tractability condition.
- 2) It depends on the minimum sampling proportion in each state.
- 3) Regret decreases at the rate of  $n^{-3/2}$  which is optimal in the bandit setting.

## Regret Lower Bound

We use an alternate definition of regret than the standard pseudo-regret definition in bandits. The regret of the learning algorithm is defined as  $\mathcal{R}_n = \mathcal{L}_n - \mathcal{L}_n^*$  where,  $\mathcal{L}_n$  is the loss of the algorithm and  $\mathcal{L}_n^*$  is the loss of the oracle.

**Theorem 1. (Lower Bounds)** Under Tractability condition the regret  $\mathcal{R}_n = \mathcal{L}_n(\pi, \mathbf{b}) - \mathcal{L}_n^*(\pi, \mathbf{b}_*)$  is lower bounded by

$$\mathbb{E}[\mathcal{R}_n] \geq \begin{cases} \Omega\left(\max\left\{\frac{A^{1/3}}{n^{3/2}}, \left(\frac{H_{*,(1)}^2 A^{2/3}}{n^{3/2}}\right)\right\}\right), & (\text{MAB}) \\ \Omega\left(\max\left\{\frac{\sqrt{SAL^2}}{n^{3/2}}, \left(\frac{H_{*,(1)}^2 SAL^2}{n^{3/2}}\right)\right\}\right) & (\text{MDP}) \end{cases}$$

where,  $\Delta_0 = V_c^{\mathbf{b}^*}(s_1) - V_c^{\pi_0}(s_1)$  and  $H_{*,(1)} = \frac{1}{\alpha V_c^{\pi_0}(s_1)} (\alpha V_c^{\pi_0}(s_1) + \Delta_0)$  is the hardness parameter.

## Experiments

- 1) SaVeR achieves the lowest regret among all baselines
- 2) SaVeR balances exploration and exploitation by collecting sufficient safety budget and exploring new state-action pairs with high variance to reduce MSE

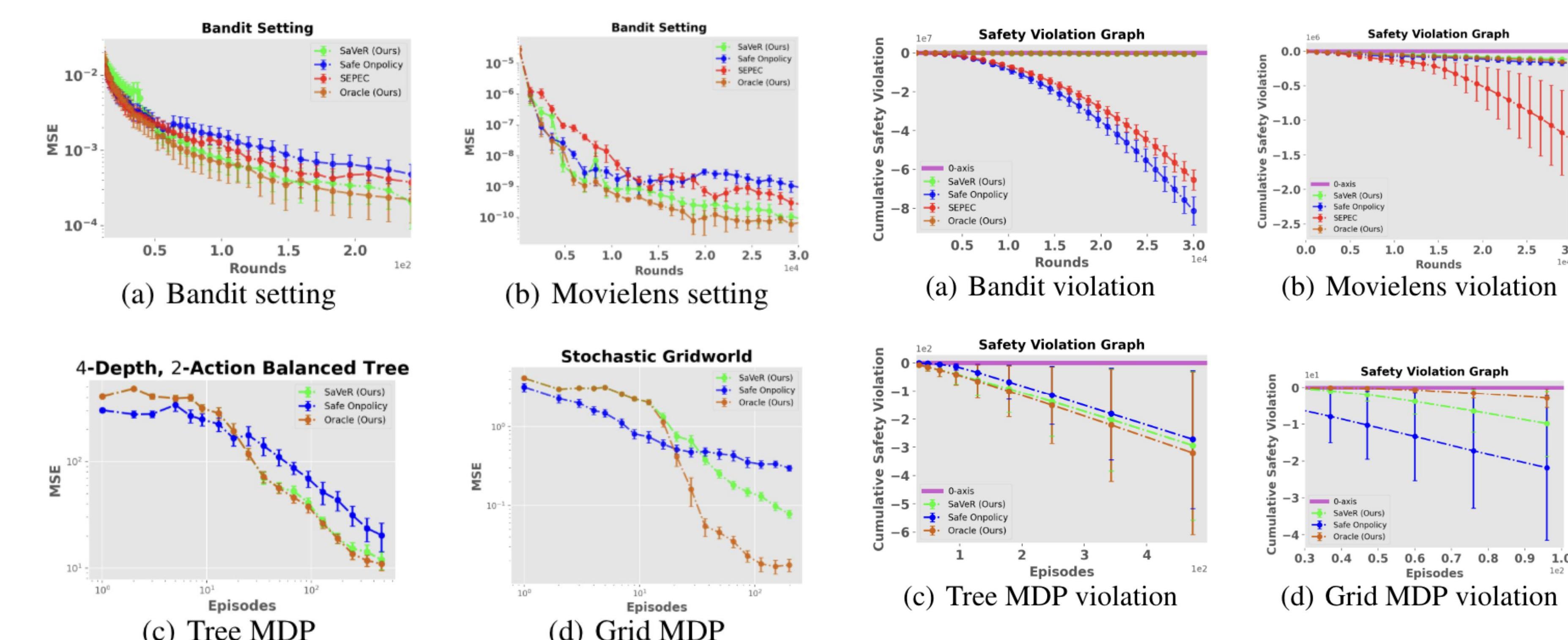


Figure 2. The vertical axis gives cumulative constraint violation and the horizontal axis is the number of episodes/rounds. The 0-axis is shown in pink. A safe algorithm has its plot below the 0-axis with the plot showing the cumulative unsafe budget.



## References

- [1] Alexandra Carpentier, Remi Munos, and András Antos. Adaptive strategy for stratified monte carlo sampling. *J. Mach. Learn. Res.*, 16:2231–2271, 2015.
- [2] Subhojoyoti Mukherjee, Josiah P. Hanna, and Robert D. Nowak. Revar: Strengthening policy evaluation via reduced variance sampling. In *Uncertainty in Artificial Intelligence*, pages 1413–1422. PMLR, 2022a.