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In off-policy RL we evaluate a target policy on a pre-collected
dataset before deploying it in real-world. This dataset is collected
using a different behavior policy. Recent works in policy
evaluation for RL assumes a fixed or adaptive behavior policy
that generates data to evaluate a particular target policy. In our
work, we study the optimal choice for such adaptive behavior
policy under safety constraints and introduce a method that can
learn the optimal behavior policy during data collection.

Contributions:
1) We show that there exists a class of intractable MDPs where no

safe algorithm can efficiently collect data and satisfy the safety

constraints
2) We define the tractability condition for an MDP such that a safe

oracle algorithm can efficiently collect data and using that we

prove the first lower bound for this setting

3) We introduce algorithm SaVeR that approximates a safe oracle
algorithm and bound the finite-sample mean squared error of the
algorithm while ensuring it satisfies the safety constraint.

vVvaluloc

Our objective is to determine a sequence of behavior policies, {b1, .., bx }, that will produce a set of
K episodes that lead to the most accurate estimate of V™ (s1) subject to the constraint that the cumulative
expected constraint-value VP (s1) always exceeds a fixed percentage of V™ (s1). We consider the objective:

min [Ep
b

(V7 (s1) = V™ (1))

k
st. Y VP (s1) > (1 - a)kV[™ (sy) forall k € [K]
k=1

where Y,, (s1) is our estimate of V™ (s1),a € (0, 1] is the risk parameter, and the expectation is over the
collected data set D. We also make the following simplifying assumption.

VcAaluoc

Define V¢  (s1) as the value of worst case behavior policy b~ that suffers a cost value that is lower than
any other behavior policy b. So this policy b™ can be thought of as the worst possible behavior policy that
can be followed by the agent during an episode. Then the tractability condition states that
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where C, € (0,1) is a MDP dependent parameter that depends on the reward variance of state-action pairs.
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We lower the MSE of policy evaluation =" Regret CowerBound ™

INn MDPs with an adaptive behavior

policy under safety constraints

Algorithm 1 Safe Variance Reduction (SaVeR) for T

1) In real world setting the variances are I: Input: Risk Parameter @ > 0, target policy 7.

unknown. 2: Output: Dataset D.
2) SaVeR uses plug-in estimates of the 3: Initialize D = (), by (a|s) uniform over all actions.
| | | 4. fork =1,2,..., K do
variances for oracle policy b* defined by 5. forl{=1,2,...,Ldo
6:  GetH" = {Sy, A}, R(S}, A7), C(SF, A})} s
h ” ’Z"k—l >0.k> VK by selecting b”* according to (8).
bE = {my  if 25 <0 ol ¥ P2tPuiRiyy .
) | £ 2k . S 0.k < \/7 8: Update model parameters and estimate b (a/s)
My 1 0, for each s, a
9:  end for
3) i = 10: end for
ko sp 7k—1 : % '
£ Da li g‘k | = 8’ k> VK ®) 11: Return Dataset D to evaluate policy .
= M0 1 T
me i ZF1 >0,k < VK b.(als) o< (2(alsf) [0?(s¢. )
4) Use UCB to introduce exploration F 2 Pl i M) @
5) Kee pS Safety bUdget 2 k—1 and mo = Baseline .POIicy . where, M (%) is the normalization factor defined as follows:
| m, = Exploration Policy M) = 3 (r2(als!) (0% (s )
explores when safety budget is b, = Oracle policy R

+ Y P(siH s a)MP(s5T)) 2 (9)
T

sufficiently high

—k

Define the regret as R, =L, (71', B"’) L (7r b’“) where

L, (7r bk) 1s the upper bound to the safe oracle MSE.
Define the constraint regret as follows: Rn = Cn ('n, bk)

—

C, (m, b¥)
where EZ (7r, b’j) 1s the upper bound to the oracle constraint viola-

Coro_llary 1 Under Traétability condition, the constraint regret of SaVeR

log(n)

n3/2

1s bounded by ’R <O ( ) and the regret is bounded by R,, < O (

1) The regret of SaVeR matches the regret in the unconstrained MDP setting [1, 2]
under tractability condition.

2) It depends on the minimum sampling proportion in each state.

3) Regret decreases at the rate of ,,—3/2 which is optimal in the bandit setting.

We use an alternate definition of regret than the standard
pseudo-regret definition in bandits. The regret of the learning

algorithm is definedas R, = L, — L,
where, L,, is the loss of the algorithm and L, is the loss of the oracle.

Theorem 1. (Lower Bounds) Under Tractability condition the regret
Ry = Ly(m,b)— L (7, b¥) is lower bounded by
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where, Ag = VP (s )

1s the hardness parameter.

Vo (s1) and H, (1) =

“

1) SaVeR achieves the lowest regret among all baselines
2) SaVeR balances exploration and exploitation by collecting sufficient
safety budget and exploring new state-action pairs with high variance to
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Figure 2. The vertical axis gives cumulative constraint violation
and the horizontal axis 1s the number of episodes/rounds. The
0-axis 1s shown 1n pink. A safe algorithm has its plot below the

) 0-axis with the plot showing the cumulative unsafe budget.
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