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Introduction

Data augmentation methods are either hand-designed or
model-based. Hand-designed methods, like color changes
and random cropping in visuals or mutations in DNA
sequences, require human input and are often data-specific,
struggling with complex data where small changes
significantly impact semantics. Semantics-independent
methods like adding noise exist but aren’t always effective.
Additionally, hand-designed methods need more samples to
mitigate risks from subtle semantic changes, challenging in
costly domains like biology. Model-based methods using
generative models (VAE, GAN, diffusion) improve training in
vision tasks and supervised learning but face concerns about
diversity, generalization, and reliance on external data.

We propose DiffAug, a novel diffusion model-based
technique for unsupervised contrastive learning (CL),
eliminating the need for training labels. It uses a semantic
estimator and a diffusion generator to produce semantically
consistent augmented data. DiffAug is effective on DNA,
biometric, and visual datasets, outperforming benchmarks in
classification and clustering, and operates independently of
external data or manual rules.

Methods

Contrastive Learning. Contrastive learning learns
visual representation via enforcing the similarity of
the positive pairs and enlarging distance of negative
pairs. Formally, loss is defined as,
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Soft Contrastive Learning. To address the performance
degradation due to view noise in contrastive learning and to
accomplish unsupervised learning on smaller scale datasets
(Zang, 2023) designed soft contrastive learning, which
soothes sharp positive and negative sample pair labels by
evaluating the credibility of the sample pairs. Consider the
loss form for multiple positive samples and multiple negative
samples.
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Fig. Comparison of DiffAug with existing augmentation strategy. (a) Hand-designed augmentation is based on human priori
that generate new data with different feature but semantically similar semantic. (b) Model-based augmentation methods generate
new data with the same labels by training generative models with large amount of data, labels. These methods often require large
amounts of data and target specific data domains. (c) DiffAug attempts to reduce the dependence on external data and prior
knowledge through iterative training with encoders and diffusion. Expanding the application areas of unsupervised CL.

DiffAug Framework. Contrastive learning learns visual representation via enforcing the similarity of the positive
pairs and enlarging distance of negative pairs.

Semanticity Modeling (A-Step). In the semanticity Generative Modeling (B-Step). In the generative
modeling step, given a central data x. The §~N(0,1) is modeling step, the conditional diffusion generator
the random initialized data, and z is a conditional vector. GEN(:|¢) is trained by the vanilla diffusion loss.
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Experiments

We conduct experiments on various datasets,
including DNA sequences, vision, and bio-feature
datasets. We aim to demonstrate that Diffaug can
operate effectively and facilitate improvements
across diverse domains.

Table 1. Comparison of Linear probing results on DNA se-
quence datasets. The compared methods including SOTA DNA
sequence methods (DNA-BERT, NT, Hyena) and contrastive meth-
ods with human-designed DNA-augmentation.

Datasets Genomic Benchmarks (GreSova et al., 2023)
MoEnEn Coln HuWo AVE
CNN 69.0 87.6 93.0 76.7
DNA-BERT 69.4 92.3 96.3 825
NT 70.2 90.0 923 81.7
Hyena 80.9 89.0 96.4 86.2
SSL+Translocation| 83.8 88.2 95.5 80.5
SSL+RC 84.5 88.3 95.8 84.3
SSL+Insertion 80.9 89.8 96.6 85.0
SSL+Mixup 80.9 89.4 96.2 85.4
DiffAug || 86.0(+1.5) 94.9(+2.6) 96.8(+0.2) 89.1(+2.9)

Table 3. Comparison of Linear probing results on vision
dataset.

Datasets || CF10 CF100 STL10 TINet
SimCLR 89.6 60.3 89.0 45.2
Mo.V2 86.7 56.1 89.1 47.1
BYOL 92.0 62.7 91.8 46.1
SimSiam 91.6 64.7 89.4 43.0
DINO 91.8 67.4 91.7 442
SimC.+Mixup 90.9 62.9 89.6 —
Mo.V2+Mixup 91.5 62.7 90.1 —
SimC.+VAE 89.6 64.2 91.7 46.0
Mo.V2+VAE 89.3 65.9 91.2 433
SimC.+GAN 90.0 64.3 89.9 44.6
Mo.V2+GAN 91.1 62.9 91.2 43.6
DiffAug || 93.4(+1.6) 69.9(+2.5) 92.5(+0.8) 49.7(+2.1)




