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CLIP has show impressive zero-shot transfer capabilities.

Transfer the capability of CLIP to multi-label recognition (MLR) faces two challenges:

* Collecting sufficient multi-label annotated image data in real-world application is
challenging and not scalable.

* CLIP only focuses on matching each image with a single label during its training,
hence it is not suitable to handle the multi-label cases.



Motivation

* Pretrained vision-language model learned

an shared multi-modal embedding space
via contrastive learning.

Language data is much easier to collect.
Large Language Model (LLM) can
generate a large scale multi-label
language dataset automatically.
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Method Overview

Text-only training

Inference
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* Text data generation

Text dataset
“Please make a brief o i cean allacsionataly
sentence to describea =9 L[LILM ===-=- » “A cat perches curiously |, U
photo that contains ...” on the hood 0{ a parked
car.
* Text only training
Text dataset
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Method

* Inference stage

» Cross-modal mapping
» Fine-grained image embeddings

Similarity Weights
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Experiments

* Our method shows good results on both zero-shot and few-shot MLR tasks.

Table 1. Comparison with zero-shot learning methods without 1m-
age training on MS-COCO, VOC2007, and NUS-WIDE. The
evaluation is based on mAP (%).

Method MS-COCO VOC2007 NUS-WIDE
Zero-shot CLIP 47.3 76.2 36.4
CLIP-DPT 49.7 77.3 37.4
Tal-DPT 65.1 88.3 46.5
CoMC 68.7 89.4 48.2
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Table 2. Comparison with related multi-label zero-shot learning methods with image training on the NUS-WIDE dataset. We report the
results in terms of mAP, as well as precision (P), recall (R), and F1 score at K € {3,5}.

Top-3

Top-5

Method p R F1 p R F1 mAP
CONSE (Norouzi et al., 2013) 17.5 28.0 21.6 13.9 37.0 20.2 9.4
LabelEM (Akata et al., 2015) 15.6 25.0 19.2 13.4 35.7 19.5 7.1
FastOTag (Zhang et al., 2016) 22.6 36.2 27.8 18.2 48.4 26.4 15.1
One Attention per Label (Kim et al., 2018) 20.9 33.5 25.8 16.2 43.2 23.6 10.4
LESA (M=10) (Huynh & Elhamifar, 2020) 25.7 41.1 31.6 19.7 52.5 28.7 19.4
BiAM (Narayan et al., 2021) - - 33.1 - - 30.7 26.3
SDL (M=7) (Ben-Cohen et al., 2021) 24.2 41.3 30.5 18.8 53.4 27.8 25.9
MKT (He et al., 2023) 27.7 44.3 34.1 214 57.0 31.1 37.6
DualCoOp (Sun et al., 2022) 37.3 46.2 41.3 28.7 59.3 38.7 43.6
CoMC 33.5 53.5 41.2 24.8 66.1 36.1 48.2

Table 3. Comparison with multi-label few-shot methods on VOC2007 and MS-COCO. The evaluation is based on mAP (%) for 0-shot,
1-shot, 2-shot, 4-shot, 8-shot, and 16-shot with treating all classes as novel classes.

Method VOC2007 MS-COCO
O-shot 1-shot 2-shot 4-shot 8-shot 16-shot | O-shot 1-shot 2-shot 4-shot 8-shot 16-shot
CoOp - 79.3 83.2 83.8 84.5 85.7 = 52.6 57.3 58.1 59.2 59.8
CoOp-DPT . 83.2 88.1 88.2 90.0 90.1 - 65.8 66.2 67.6 68.1 68.9
CoMC 89.4 89.7 90.1 90.6 914 92.1 68.7 68.9 69.3 70.4 70.9 71.4
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Thank you!

The full paper can be found here.
Code is available at https://github.com/yic20/CoMC



https://openreview.net/pdf/7a294126e555d2dcde6f721c089d86cd6af0bec4.pdf
https://github.com/yic20/CoMC

