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Data Privacy in Machine Learning

Models should not leak training data



Data Privacy in Machine Learning

Models should not leak training data

Allow inferring what could not otherwise
be learned about a data record when
it is excluded from the training set



Leakage!!

Reconstructed Original Image

1[Ye, Borovykh, Hayou, and Shokri] Leave-one-out Distinguishability in Machine
Learning, ICLR 2024



Measuring Information Leakage: Membership Inference Game

Sample data %o, 21, T2, - Ty ~ T

Sample secret bit |b~ {0, 1}

Train a model

training
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Measuring Information Leakage: Membership Inference Game

Sample data %o, 21, T2, - , Ty ~ T

Sample secret bit |b~ {0, 1}

Train a model

training
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e Send # and z( to adversary.

e Adversary wins if it correctly infers membership of z.

e Adversary's success is due to model's leakage.



Membership Inference Attack (MIA)?

Given a model 0 and a data point z, infer if x was part
of the training set of 6.

2[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine
Learning Models, IEEE S&P 2017



How MIA helps partition the data universe
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How MIA helps partition the data universe
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TPR-FPR Tradeoff Curve (corresponding to a MIA game)
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TPR-FPR Tradeoff Curve (corresponding to a MIA game)
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Applications of MIA

e Privacy auditing tools (e.g., privacy-meter.com)
e Methods for quantitative analysis of memorization

e Oracles in reconstruction attacks



Prior Work

e Over 8000 papers since [Homer et al., 2008]



Prior Work

e No single prior attack outperforms all others in every

scenario



Prior Work

e Attacks outperform each other in different parts of
the TPR-FPR tradeoff curve



Prior Work

e Some methods fail against well-generalized models



Prior Work

e Some methods fail against large models



Prior Work

e Many methods fail at detecting both in-distribution

members and out-of-distribution non-members



Prior Work

e Many attacks are computationally very costly (as they

require training so many reference models) 9



Expectations from a MIA method

MIA must be efficient (to make the privacy auditing
practical), precise (to accurately reflect the risk), and
robust (to be a reliable auditing method under various
settings).

10



Expectations from a MIA method

MIA must be efficient (to make the privacy auditing
practical), precise (to accurately reflect the risk), and
robust (to be a reliable auditing method under various
settings).

We design a Robust Membership Inference Attack
(RMIA) with these objectives

10



# Ref Models

CIFAR-10

Attack

TPR @ FPR
AUC
0.01 % 0.0 %
0 Attack-P [Ye et al., 2022, Yeom et al., 2018] 58.19+0.33  0.01+0.01  0.00+0.01
1* Quantile-Reg. [Bertran et al., 2023] 61.45+0.29 0.08+0.05 0.03+0.03
Attack-R [Ye et al., 2022] 63.654+0.27 0.07+0.04 0.02+0.02
1 LiRA [Carlini et al., 2022] 53.204+0.23 0.48+0.10 0.25+0.11
RMIA [Zarifzadeh et al., 2024] 68.64+0.43 1.19+0.27 0.51+£0.32
Attack-R [Ye et al., 2022] 63.35+0.30 0.32+0.15 0.08+0.06
5 LiRA [Carlini et al., 2022] 54.42+0.34 067+024 0.27+0.12
LiRA [Carlini et al., 2022] (Online) 63.97+0.35 0.76+0.24 0.43+0.21
RMIA [Zarifzadeh et al., 2024] 70.13+0.37 1.714+0.23 0.91+0.30
Attack-R [Ye et al., 2022] 63.524+0.29 0.65+0.21 0.214+0.20
4 LiRA [Carlini et al., 2022] 54.60+0.25 0.97+044 0.57+0.40
LiRA [Carlini et al., 2022] (Online) 67.00+0.33 1.38+0.37 0.51+£0.35
RMIA [Zarifzadeh et al., 2024] 71.02+0.37 2.91+0.64 2.13+0.47
Attack-R [Ye et al., 2022] 64.41+041 1524033 0.80+0.43
127 LiRA [Carlini et al., 2022] 55.184+0.37 1.374+0.32 0.72+0.31
RMIA [Zarifzadeh et al., 2024] 71.71+0.43 4.18+0.61 3.14+0.87
254 LiRA [Carlini et al., 2022] (Online) 72.04+047 339+086 2.01+0.78
RMIA [Zarifzadeh et al., 2024] (Online)  72.25+0.46 4.31+0.47 3.15+0.61

11



Attacking larger models with 1 reference/attack model

CIFAR100
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CIFAR10, 25k training data

—6—  RMIA (Online)* [Zarifzadeh et al., 2024]
—A— RMIA [Zarifzadeh et al., 2024]

70 [ | e LiRA (Online) [Carlini et al., 2022]
—— Reference Models [Ye et al., 2022]
------ Quantile Reg. [Bertran et al., 2023]
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65 7 - | —8— LiRA [Carlini et al., 2022]
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3In the online setting, for every membership inference MIA (z; 0), the adversary trains
half of his reference models on datasets that contain x. We consider these impractical
yet powerful methods as proof of concept attacks.
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In-distribution members and out-of-distribution non-members

In a reconstruction attack, an adversary can use MIA as an oracle on
extremely large number of samples which are not necessarily generated
from the same distribution as the training data. MIA should filter out the
OOD non-members while detecting in distribution members.

1
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Results are for CIFAR-10 models and non-members from CINIC-10. 14



How does RMIA work?




One Hypothesis: = was in the Training Set that Resulted in ¢

Population data

15



A Fine-Grained Model of the Null Hypothesis

Population data

Null hypothesis: composition of
worlds where a random population
data point z (and not z) was in the
training set that resulted in 6.
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A Fine-Grained Model of the Null Hypothesis

Population data

L JOROROR
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Pr(@\zl)

1

Pr(6|x)

Null hypothesis: composition of
worlds where a random population
data point z (and not x) was in the

training set that resulted in 6.
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A Fine-Grained Model of the Null Hypothesis

Population data
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Null hypothesis: composition of
worlds where a random population
data point z (and not x) was in the

training set that resulted in 6.

Design pairwise likelihood ratio
tests to check the membership of a

data point z relative to z.
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A Fine-Grained Model of the Null Hypothesis

Population data

L JOROROR

Pr(6]|z23)

PI(Q‘ZQ)

Pr(@\zl)

1

Pr(6|x)

Null hypothesis: composition of
worlds where a random population
data point z (and not x) was in the
training set that resulted in 6.

Design pairwise likelihood ratio
tests to check the membership of a

data point z relative to z.

LRy(z,2) = ggzg >17
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Composing the Pairwise LR Tests

We compose the pairwise tests:

Scoreya (z;0) = Pr (LR@(SB,Z) > 1)

Z~T

MIA corresponding to a given FPR returns “member” if:

Scoreya(z;0) > (1 — FPR)

20



Computing the Pairwise Likelihood Ratios

LRy(x,2) = :EZ‘\Q

Pr(z) is the mean of Pr(x|0") over reference models ¢'.

21



Population data
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Summary of Results

e RMIA outperforms all prior attacks in every configuration, for every
benchmark dataset and models used in MIA literature.

e TPR-FPR curves obtained for RMIA dominate the curves obtained
from other methods for all FPR

e RMIA is low-cost, and can achieve close to its maximum power while
using only a few reference models

23



Summary of Results

e RMIA outperforms all prior attacks in every configuration, for every
benchmark dataset and models used in MIA literature.
e TPR-FPR curves obtained for RMIA dominate the curves obtained
from other methods for all FPR

e RMIA is low-cost, and can achieve close to its maximum power while

using only a few reference models

e Why? Other methods appear to be uncalibrated and average versions

of RMIA.
Method RMIA LiRA Attack-R Attack-P
Pr(0|x) Pr(0|x) Pr(z|6) Pr(z|0)
MIA Score | Pr. (5,57 > 1) | mais | Do (igaay 2 1) | Pre (i > )
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