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Data Privacy in Machine Learning

Models should not leak training data

Allow inferring what could not otherwise

be learned about a data record when

it is excluded from the training set
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Leakage!1

Reconstructed Original Image

1[Ye, Borovykh, Hayou, and Shokri] Leave-one-out Distinguishability in Machine

Learning, ICLR 2024
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Measuring Information Leakage: Membership Inference Game

Sample data x0, x1, x2, · · · , xn ∼ π

Sample secret bit b ∼ {0, 1}

Train a model xb x2 . . . xn θ
training
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Measuring Information Leakage: Membership Inference Game

Sample data x0, x1, x2, · · · , xn ∼ π

Sample secret bit b ∼ {0, 1}

Train a model xb x2 . . . xn θ
training

• Send θ and x0 to adversary.

• Adversary wins if it correctly infers membership of x0.

• Adversary’s success is due to model’s leakage.
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Membership Inference Attack (MIA)2

Given a model θ and a data point x, infer if x was part

of the training set of θ.

2[Shokri, Stronati, Song, Shmatikov] Membership Inference Attacks against Machine

Learning Models, IEEE S&P 2017
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How MIA helps partition the data universe

ScoreMIA

Data
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How MIA helps partition the data universe

ScoreMIA

Data
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TPR-FPR Tradeoff Curve (corresponding to a MIA game)
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Applications of MIA

• Privacy auditing tools (e.g., privacy-meter.com)

• Methods for quantitative analysis of memorization

• Oracles in reconstruction attacks

8



Prior Work

• Over 8000 papers since [Homer et al., 2008]

• No single prior attack outperforms all others in every

scenario

• Attacks outperform each other in different parts of

the TPR-FPR tradeoff curve

• Some methods fail against well-generalized models

• Some methods fail against large models

• Many methods fail at detecting both in-distribution

members and out-of-distribution non-members

• Many attacks are computationally very costly (as they

require training so many reference models) 9
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Expectations from a MIA method

MIA must be efficient (to make the privacy auditing

practical), precise (to accurately reflect the risk), and

robust (to be a reliable auditing method under various

settings).

We design a Robust Membership Inference Attack

(RMIA) with these objectives
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# Ref Models Attack

CIFAR-10

AUC
TPR @ FPR

0.01 % 0.0 %

0 Attack-P [Ye et al., 2022, Yeom et al., 2018] 58.19± 0.33 0.01± 0.01 0.00± 0.01

1* Quantile-Reg. [Bertran et al., 2023] 61.45± 0.29 0.08± 0.05 0.03± 0.03

1

Attack-R [Ye et al., 2022] 63.65± 0.27 0.07± 0.04 0.02± 0.02

LiRA [Carlini et al., 2022] 53.20± 0.23 0.48± 0.10 0.25± 0.11

RMIA [Zarifzadeh et al., 2024] 68.64± 0.43 1.19± 0.27 0.51± 0.32

2

Attack-R [Ye et al., 2022] 63.35± 0.30 0.32± 0.15 0.08± 0.06

LiRA [Carlini et al., 2022] 54.42± 0.34 0.67± 0.24 0.27± 0.12

LiRA [Carlini et al., 2022] (Online) 63.97± 0.35 0.76± 0.24 0.43± 0.21

RMIA [Zarifzadeh et al., 2024] 70.13± 0.37 1.71± 0.23 0.91± 0.30

4

Attack-R [Ye et al., 2022] 63.52± 0.29 0.65± 0.21 0.21± 0.20

LiRA [Carlini et al., 2022] 54.60± 0.25 0.97± 0.44 0.57± 0.40

LiRA [Carlini et al., 2022] (Online) 67.00± 0.33 1.38± 0.37 0.51± 0.35

RMIA [Zarifzadeh et al., 2024] 71.02± 0.37 2.91± 0.64 2.13± 0.47

127

Attack-R [Ye et al., 2022] 64.41± 0.41 1.52± 0.33 0.80± 0.43

LiRA [Carlini et al., 2022] 55.18± 0.37 1.37± 0.32 0.72± 0.31

RMIA [Zarifzadeh et al., 2024] 71.71± 0.43 4.18± 0.61 3.14± 0.87

254
LiRA [Carlini et al., 2022] (Online) 72.04± 0.47 3.39± 0.86 2.01± 0.78

RMIA [Zarifzadeh et al., 2024] (Online) 72.25± 0.46 4.31± 0.47 3.15± 0.61
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Attacking larger models with 1 reference/attack model

CIFAR100 ImageNet
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20 22 24 26 28

55

60

65

70

Number of Reference Models

A
U
C

CIFAR10, 25k training data

RMIA (Online)3 [Zarifzadeh et al., 2024]

RMIA [Zarifzadeh et al., 2024]

LiRA (Online) [Carlini et al., 2022]

Reference Models [Ye et al., 2022]

Quantile Reg. [Bertran et al., 2023]

Population [Ye et al., 2022, Yeom et al., 2018]

LiRA [Carlini et al., 2022]

3In the online setting, for every membership inference MIA(x; θ), the adversary trains

half of his reference models on datasets that contain x. We consider these impractical

yet powerful methods as proof of concept attacks.
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In-distribution members and out-of-distribution non-members

In a reconstruction attack, an adversary can use MIA as an oracle on

extremely large number of samples which are not necessarily generated

from the same distribution as the training data. MIA should filter out the

OOD non-members while detecting in distribution members.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P
R

RMIA [Zarifzadeh et al., 2024]

Attack-P [Ye et al., 2022, Yeom et al., 2018]

Attack-R [Ye et al., 2022]

LiRA [Carlini et al., 2022]
Random Guess

Results are for CIFAR-10 models and non-members from CINIC-10. 14



How does RMIA work?



One Hypothesis: x was in the Training Set that Resulted in θ

x

θ

x

θ
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A Fine-Grained Model of the Null Hypothesis

x
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x

θ
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ta

Null hypothesis: composition of

worlds where a random population

data point z (and not x) was in the

training set that resulted in θ.
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A Fine-Grained Model of the Null Hypothesis
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A Fine-Grained Model of the Null Hypothesis
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Null hypothesis: composition of

worlds where a random population

data point z (and not x) was in the

training set that resulted in θ.

Design pairwise likelihood ratio

tests to check the membership of a

data point x relative to z.
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A Fine-Grained Model of the Null Hypothesis

x

θ

Pr(θ|x)x

θ

Pr(θ|x)

z1

z2

z3

··
·

P
op
ul
at
io
n
da
ta

Pr(θ|z1)

Pr(θ|z2)

Pr(θ|z3)

Null hypothesis: composition of

worlds where a random population

data point z (and not x) was in the

training set that resulted in θ.

Design pairwise likelihood ratio

tests to check the membership of a

data point x relative to z.

LRθ(x, z) =
Pr(θ|x)
Pr(θ|z) > 1 ?
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Composing the Pairwise LR Tests

We compose the pairwise tests:

ScoreMIA(x; θ) = Pr
z∼π

(
LRθ(x, z) ≥ 1

)
MIA corresponding to a given FPR returns “member” if:

ScoreMIA(x; θ) ≥ (1− FPR)

20



Computing the Pairwise Likelihood Ratios

LRθ(x, z) =
Pr(θ|x)
Pr(θ|z)

=

(
Pr(x|θ)
Pr(x)

)
·
(
Pr(z|θ)
Pr(z)

)−1

Pr(x) is the mean of Pr(x|θ′) over reference models θ′.

21



x

θ

Pr(x|θ)

z1

z2

z3
··
·

P
op
ul
at
io
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da
ta

Pr(z1|θ)

Pr(z2|θ)

Pr(z3|θ)

Reference Models

θ′1 θ′2 θ′3 · · ·

Pr(x)

Pr(z1)

Pr(z2)

Pr(z3)

Prz∼π(
Pr(x|θ)
Pr(x) ≥ Pr(z|θ)

Pr(z) )
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Summary of Results

• RMIA outperforms all prior attacks in every configuration, for every

benchmark dataset and models used in MIA literature.

• TPR-FPR curves obtained for RMIA dominate the curves obtained

from other methods for all FPR

• RMIA is low-cost, and can achieve close to its maximum power while

using only a few reference models

• Why? Other methods appear to be uncalibrated and average versions

of RMIA.

Method RMIA LiRA Attack-R Attack-P

MIA Score Prz
(Pr(θ|x)
Pr(θ|z) ≥ 1

) Pr(θ|x)
Pr(θ|x̄) Prθ′

( Pr(x|θ)
Pr(x|θ′) ≥ 1

)
Prz

(Pr(x|θ)
Pr(z|θ) ≥ 1

)
23
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