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Introduction
* Background

* Unique IDs are assigned to documents for indexing and retrieval.

* E-commerce products have distinctive product IDs.

* Web pages are linked to specific URLs.
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Introduction
* Background

* Unique IDs are assigned to documents for indexing and retrieval.
* E-commerce products have distinctive product IDs.
* Web pages are linked to specific URLs.

* However, these |IDs are often randomly assigned and lack the assurance of the content
information of items and documents.
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Introduction
* Background

* However, these |IDs are often randomly assigned and lack the assurance of the content
information of items and documents.

* This hinders the effective understanding, indexing and searching based solely on IDs.

“a ball for my little son”
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Introduction

* Semantic ID
* A sequence of discrete ID numbers that captures the semantic meaning of a document.

* The objective is to ensure that the initial set of semantic |IDs captures the coarse-grained document
semantics while the subsequent IDs delve into the details of its content in a hierarchical structure.
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Introduction

* How can we assign semantic IDs to documents?
* A straightforward way is to use the category information or external hierarchy.
* However, such external information not always exist.
* In many cases, we only have text associated with each document.

* Problem definition (Learning semantic IDs with text self-supervision)
* Input:
* A corpus of documents with texts.
* Output:
* Semantic ID for each document in the input corpus.



Existing works

* Two-step methodology
* Step |:procure embeddings for documents with off-the-shelf text encoders.

* Step 2:specific techniques, e.g., rq-VAE or hierarchical clustering to derive IDs.

@ el Text Encoder N i = rq-VAE/hierarchical clustering IDs

 Limitations

* Inherent mismatch between the distribution of the embeddings in the latent space
generated by encoder and the expected distribution for semantic indexing.

* Each step of this process introduces potential information loss.



Our solution: LMIndexer

* Single step: Learn a language model as a semantic indexer

@ — Language model (semantic indexer) o IDs

* This is non-trivial given that

* We do not have any ID supervision: Let’s use the self-supervision from text itself to
learn the IDs.

* The IDs are discrete rather than continuous (hard to optimize).



Our solution: LMIndexer

* Single step: Learn a language model as a semantic indexer

@ — Language model (semantic indexer) — IDs

* Learning Semantic IDs with Sequential Discrete Auto-reconstruction
* Self-supervision learning to alleviate the lack of ID supervision.
* Learn the semantic IDs with sequential discrete representations.
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Our solution: LMIndexer

* Learning Semantic IDs as Neural Sequential Discrete Representations
* We adopt an encoder-decoder Transformer (T5) as the base model.

. Ccii denote the semantic ID of the document d at the position 1.
* We first learn the continuous representation at position t as

h}, = SemEncy(d, c;*) = TransDecoder(TransEncoder(d), ¢ ).
(1)

» The continuous representation h} is then projected to a discrete representation by

P,(c5 = jlc3t, d) = Softmaxet,C_Et(ht -ez-),

¢, = argmax; P, (¢, = jle5", d).



Our solution: LMIndexer

* Reconstructing Document with Sequential Discrete Semantic ID Embeddings
* Basically, we use the semantic IDs ¢, to reconstruct the original document d.

* If this can be well-performed, this means that ¢; contains enough semantic information.
* However, solely based on ¢ is difficult.VWe consider provide some hints dj,.

Lrecon = _2 Z log Precon 'w|cd, dp).
d ’U)Ed\dh

* We adopt a shallow Transformer as the reconstructor.

zw = Recony(cq, dn) = ZTrans(q = ¢y, k = dn,v = d)
t

Precon(w|eq, dn) = softmax(W z,,)



Our solution: LMIndexer

* Reconstructing Document with Sequential Discrete Semantic ID Embeddings

* However, directly adopting the reconstruction objective with ¢ as input to the reconstructor will not

optimize the semantic encoder.
* The codebook look-up is a hard/discrete operation.
* To this end, we propose to approximate the argmax operation with

t t
argmaxXgtcpt hg - €; forward pass.
J

At o i
cd — exp(hd'e.j t
te Rt —~ €; backward pass.
S Ze;eEt exp(hy-e;) 7

* In our implementation, we achieve this by adopting the “stop gradient” operation.

* The final reconstruction loss is

zw = Recony (&5, dy) = ZTrans(q = ¢&4k = dn,v = dy)
t



Our solution: LMIndexer

* Training self-supervised semantic indexer
* Progressive training: IDs have dependencies.

Eﬁecon - _Z Z longeCOH(wlcjta dltl)

d wed\dﬁ

* Contrastive loss: promote distinction between documents that shared the same prefix.

exp(hyg - hg)
Lioitrastive ==Y . log .
contrastive Zd: CXp(hfi . hﬁi) -+ chltzc:j:t CXP(hZ . hfil)

NN\

* Commitment loss: force the semantic indexer to remember the previous learnt IDs.

L(t:ommitment - = Z Z log PS(Cildv ij)'

d 1<t



Our solution: LMIndexer

* Training self-supervised semantic indexer
* Final loss: a combination of the three losses.

. t _ pt t t
9rglgt L = ‘Crecon + Lcontrastive + ‘Ccomrnitment'

* Reconstructor collapse: constructor is performing badly and misguides the semantic
indexer.

m‘gn L?econ o _Z Z lOgPrecon(’LU'dg)-

d wed)\ dy)

* Posterior collapse: information provided by the semantic indexer is weak and noisy for
the reconstructor.

. t <t t t
r{;nnﬁ , Zw = Recong(cyg , hg,dy)
)



Our solution: LMIndexer

* Finetuning semantic indexer on downstream tasks

* Downstream tasks which take text as input and expect document IDs as output.

* E.g.,, recommendation (user history text as input, next item |ID as output)
* E.g., retrieval (query as input and document ID as output)

L downstream = — 2 y] log P (dil% ij)'

(q,Cd)GD JST

P

[;] |;| ltemiDs | * [;] [;] Document IDs @
Semantic Indexer ;I l;l [ codebook E J Semantic Indexer ;] L_:] [ Codebook E J
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(a) Recommendation (b) Retrieval
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Experiments

e Datasets:
* Amazon

* Beauty, Sports, Toys

* Wiki
« NQ320k

* Web
« MACRO |IM
« TREC DL IM

e Downstream tasks

e Recommendation
 Retrieval

Dataset

# Items # Users

# Rec history (train/dev/test)

Amazon-Beauty
Amazon-Sports
Amazon-Toys

22,363
35,598

111,815/722,363 /22,363
177,990 / 35,598 / 35,598
97,060/ 19,412/ 19,412

Dataset # Documents

# Query (train/test) # Search labels (train/test)

NQ320k
MACRO 1M
TREC-DL 1M

109,739
1,000,000
1,000,000

307,373 /7,830 307,373 /7,830
502,939 /6,980 532,751/7437
502,939 /93 532,751 /1,069
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Experiments: Learning Self-supervised Semantic ID

* Semantic ID Analysis (quantitative results)

Table 1. ID quantitative study (AMI) on Amazon datasets.

Model Beauty Sports  Toys

rq-VAE indexer (BERT) 0.2654 0.2774 0.3154
HC indexer (BERT) 0.2428 0.2387 0.2729
rq-VAE indexer (In-domain SimCSE) 0.3100 0.2695 0.3126
HC indexer (In-domain SIimCSE) 0.2771 0.2622 0.2968
LMINDEXER 0.3563 0.4163 0.3536

Table 13. Human evaluation of semantic ID quality.

Model Accuracy
rq-VAE indexer  0.7375
HC indexer 0.5375

LMINDEXER 0.7750

* LMindexer outperforms baselines consistently, which demonstrates that the IDs learned by LMIndexer are

more semantic-indicative.
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Experiments: Learning Self-supervised Semantic ID

* Semantic ID Analysis (qualitative results)

Probabilities by Category and Semantic ID
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(a) The ground-truth category distribution for items in the
Amazon-Beauty dataset is colored by the value of first ID ¢’.

* ¢! captures the coarse-grained category.
e ¢? further categorizes into fine-grained categories.
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Experiments:
* Training study

~no reconwarmup recon warmup
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(a) RC: Macro-F1 (b) PC: perplexity (c) PC: Macro-F1 (d) CL: perplexity

Table 2. Ablation study of commitment loss.
Dataset

Sports  Toys  Beauty

305.39 280.30 287.01
147.10 211.60 261.04

w. commitment loss
w/0o commitment loss

Learning Self-supervised Semantic ID

no contrastive contrastive

[

o

N

e o o ©
b

Difference Ratio
o N

0 5000 e10000 15000

Stép

(e) CL: diff ratio

* Reconstructor collapse and posterior collapse exist without proper warm up operations.

* Contrastive loss can facilitate ID distinction and diversity.

* Commitment loss can force the semantic indexer remember the previous learned IDs.

19



Experiments: Downstream Tasks

* Sequential Recommendation

Table 3. Next item recommendation.

Amazon-Beauty Amazon-Sports Amazon-Toys
Model Recall@5 NDCG@5 Recall@5 NDCG@5 Recall@5 NDCG@5
HGN 0.0325 0.0206 0.0189 0.0120 0.0321 0.0221
GRU4Rec 0.0164 0.0099 0.0129 0.0086 0.0097 0.0059
BERT4Rec 0.0203 0.0124 0.0115 0.0075 0.0116 0.0071
FDSA 0.0267 0.0163 0.0182 0.0122 0.0228 0.0140
rq-VAE indexer 0.0136 0.0086 0.0067 0.0040 0.0084 0.0055
HC indexer 0.0129 0.0078 0.0076 0.0050 0.0082 0.0054

LMINDEXER 0.0415 0.0262 0.0222 0.0142 0.0404 0.0268

* LMIndexer outperforms the competitive baseline methods consistently and significantly.



Experiments: Downstream Tasks

* Sequential Recommendation

0.045 0.06
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0.035 X
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g oodﬁ g 0.02
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0.01
0.005 S
0 0
1 2 3 128 256 512
ID length Codebook Size
(a) ID length (b) Codebook size

* The model performance increases as the semantic ID length or codebook size increases.
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Experiments: Downstream Tasks

* Product Search

Table 4. Product search.

Amazon-Beauty Amazon-Sports Amazon-Toys
Model NDCG@5 MAP@5 NDCG@5 MAP@5 NDCG@5 MAP@5
bm25 0.2490 0.2152 0.1898 0.1581 0.2085 0.1760
Dual Encoder 0.2565 0.2096 0.2556 0.2223 0.2805 0.2420
SEAL 0.1271 0.1050 0.2011 0.1739 0.1035 0.0843
rq-VAE indexer 0.2710 0.2469 0.2606 0.2354 0.2511 0.2287
HC indexer 0.2172 0.1959 0.1979 0.1812 0.2379 0.2156
LMINDEXER 0.3187 0.2888 0.2870 0.2607 0.2865 0.2592

* LMIndexer outperforms the competitive baseline methods consistently and significantly.



Experiments: Downstream Tasks

* Product Search

Table 5. Study of the number of layers in reconstructor on Amazon-
Beauty dataset. AMI, Recall@5, and NDCG@5 are used as met-
rics for ID quality study, recommendation, and retrieval.

Model ID quality Recommendation Retrieval
LMINDEXER (Recon 1 layer) 0.3563 0.0415 0.3187
Recon 2 layers 0.2390 0.0284 0.2528
Recon 3 layers 0.1679 0.0281 0.2522

* As the reconstructor layer increases, the quality of the semantic indexer and its generated |Ds decreases.
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Experiments: Downstream Tasks

* Document retrieval

Table 6. Document retrieval.

NQ320k TREC-DL IM MACRO 1M

Model Recall@]1 Recall@l0 Recall@10 NDCG@10 MRR@10
bm25 0.2970 0.6030 0.2756 0.2995 0.3144
Dual Encoder 0.5360 0.8300 0.3612 0.3941 0.5561
SEAL 0.5990 0.8120 - - -
rq-VAE indexer  0.6480 0.8322 0.4199 0.4579 0.5159
HC indexer 0.6439 0.8213 0.4265 0.4571 0.5126
LMINDEXER 0.6631 0.8589 0.4519 0.4695 0.5485

* LMIndexer outperforms the competitive baseline methods consistently and significantly.
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Conclusion

* In this work, we explore language models as semantic indexers and
learn the IDs with only one step.

* We propose a neural sequential discrete auto-reconstruction pipeline
to train the semantic indexer with self-supervision.

* We conduct experiments on real-world datasets from both e-
commerce and web and demonstrate the effectiveness of our method
onh both recommendation and retrieval downstream tasks.



Thank You !

Subscribe and learn Code, can be found here
more about our works! https://github.com/PeterGriffinjin/LMIndexer!
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