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Introduction
• Background
• Unique IDs are assigned to documents for indexing and retrieval.

• E-commerce products have distinctive product IDs.
• Web pages are linked to specific URLs.
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Introduction
• Background
• Unique IDs are assigned to documents for indexing and retrieval.

• E-commerce products have distinctive product IDs.
• Web pages are linked to specific URLs.

• However, these IDs are often randomly assigned and lack the assurance of the content 
information of items and documents.
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Introduction
• Background
• However, these IDs are often randomly assigned and lack the assurance of the content 

information of items and documents.
• This hinders the effective understanding, indexing and searching based solely on IDs.
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Introduction
• Semantic ID

• A sequence of discrete ID numbers that captures the semantic meaning of a document.
• The objective is to ensure that the initial set of semantic IDs captures the coarse-grained document 

semantics while the subsequent IDs delve into the details of its content in a hierarchical structure.
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Introduction
• How can we assign semantic IDs to documents?
• A straightforward way is to use the category information or external hierarchy.
• However, such external information not always exist.
• In many cases, we only have text associated with each document.

• Problem definition (Learning semantic IDs with text self-supervision)
• Input:

• A corpus of documents with texts.
• Output:

• Semantic ID for each document in the input corpus.
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Existing works
• Two-step methodology
• Step 1: procure embeddings for documents with off-the-shelf text encoders.

• Step 2: specific techniques, e.g., rq-VAE or hierarchical clustering to derive IDs.

• Limitations
• Inherent mismatch between the distribution of the embeddings in the latent space 

generated by encoder and the expected distribution for semantic indexing.

• Each step of this process introduces potential information loss.

7

Text Encoder rq-VAE/hierarchical clustering IDs



Our solution: LMIndexer
• Single step: Learn a language model as a semantic indexer

• This is non-trivial given that 
• We do not have any ID supervision: Let’s use the self-supervision from text itself to 

learn the IDs.

• The IDs are discrete rather than continuous (hard to optimize).
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Our solution: LMIndexer
• Single step: Learn a language model as a semantic indexer

• Learning Semantic IDs with Sequential Discrete Auto-reconstruction
• Self-supervision learning to alleviate the lack of ID supervision.
• Learn the semantic IDs with sequential discrete representations.
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Our solution: LMIndexer
• Learning Semantic IDs as Neural Sequential Discrete Representations
• We adopt an encoder-decoder Transformer (T5) as the base model.
• 𝑐!"  denote the semantic ID of the document 𝑑 at the position 𝑖. 
• We first learn the continuous representation at position 𝑡 as

• The continuous representation ℎ!#  is then projected to a discrete representation by
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Our solution: LMIndexer
• Reconstructing Document with Sequential Discrete Semantic ID Embeddings

• Basically, we use the semantic IDs 𝒄! to reconstruct the original document 𝑑.
• If this can be well-performed, this means that 𝒄! contains enough semantic information. 
• However, solely based on 𝒄! is difficult. We consider provide some hints 𝑑".

• We adopt a shallow Transformer as the reconstructor.
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Our solution: LMIndexer
• Reconstructing Document with Sequential Discrete Semantic ID Embeddings

• However, directly adopting the reconstruction objective with 𝒄! as input to the reconstructor will not 
optimize the semantic encoder.

• The codebook look-up is a hard/discrete operation.
• To this end, we propose to approximate the argmax operation with

• In our implementation, we achieve this by adopting the “stop gradient” operation.
• The final reconstruction loss is
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Our solution: LMIndexer
• Training self-supervised semantic indexer
• Progressive training: IDs have dependencies.

• Contrastive loss: promote distinction between documents that shared the same prefix.

• Commitment loss: force the semantic indexer to remember the previous learnt IDs.
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Our solution: LMIndexer
• Training self-supervised semantic indexer
• Final loss: a combination of the three losses.

• Reconstructor collapse: constructor is performing badly and misguides the semantic 
indexer.

• Posterior collapse: information provided by the semantic indexer is weak and noisy for 
the reconstructor.
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Our solution: LMIndexer
• Finetuning semantic indexer on downstream tasks
• Downstream tasks which take text as input and expect document IDs as output.
• E.g., recommendation (user history text as input, next item ID as output)
• E.g., retrieval (query as input and document ID as output)
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Experiments
• Datasets:

• Amazon
• Beauty, Sports, Toys

• Wiki
• NQ320k

• Web
• MACRO 1M
• TREC_DL 1M

• Downstream tasks
• Recommendation
• Retrieval
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Experiments: Learning Self-supervised Semantic ID
• Semantic ID Analysis (quantitative results)

• LMIndexer outperforms baselines consistently, which demonstrates that the IDs learned by LMIndexer are 
more semantic-indicative.
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Experiments: Learning Self-supervised Semantic ID
• Semantic ID Analysis (qualitative results)

• 𝑐! captures the coarse-grained category.
• 𝑐" further categorizes into fine-grained categories.
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Experiments: Learning Self-supervised Semantic ID
• Training study

• Reconstructor collapse and posterior collapse exist without proper warm up operations.
• Contrastive loss can facilitate ID distinction and diversity.
• Commitment loss can force the semantic indexer remember the previous learned IDs.
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Experiments: Downstream Tasks
• Sequential Recommendation

• LMIndexer outperforms the competitive baseline methods consistently and significantly.
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Experiments: Downstream Tasks
• Sequential Recommendation

• The model performance increases as the semantic ID length or codebook size increases.

21



Experiments: Downstream Tasks
• Product Search

• LMIndexer outperforms the competitive baseline methods consistently and significantly.
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Experiments: Downstream Tasks
• Product Search

• As the reconstructor layer increases, the quality of the semantic indexer and its generated IDs decreases.
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Experiments: Downstream Tasks
• Document retrieval

• LMIndexer outperforms the competitive baseline methods consistently and significantly.
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Conclusion

• In this work, we explore language models as semantic indexers and 
learn the IDs with only one step.

• We propose a neural sequential discrete auto-reconstruction pipeline 
to train the semantic indexer with self-supervision.

• We conduct experiments on real-world datasets from both e-
commerce and web and demonstrate the effectiveness of our method 
on both recommendation and retrieval downstream tasks.
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Thank You !
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Subscribe and learn 
more about our works!

Code, can be found here 
https://github.com/PeterGriffinJin/LMIndexer!

https://github.com/PeterGriffinJin/LMIndexer

