
Language Models as Semantic Indexers

1

Bowen Jin1, Hansi Zeng2, Guoyin Wang3, Xiusi Chen4, Tianxin Wei1, Ruirui Li3, Zhengyang
Wang3, Zheng Li3, Yang Li3, Hanqing Lu3, Suhang Wang5, Jiawei Han1, Xianfeng Tang3

1UIUC, 2UMass, 3Amazon, 4UCLA, 5Penn Sate

Introduction
• Background
• Unique IDs are assigned to documents for indexing and retrieval.

• E-commerce products have distinctive product IDs.
• Web pages are linked to specific URLs.

2

Introduction
• Background
• Unique IDs are assigned to documents for indexing and retrieval.

• E-commerce products have distinctive product IDs.
• Web pages are linked to specific URLs.

• However, these IDs are often randomly assigned and lack the assurance of the content
information of items and documents.

3

Introduction
• Background
• However, these IDs are often randomly assigned and lack the assurance of the content

information of items and documents.
• This hinders the effective understanding, indexing and searching based solely on IDs.

4

“a ball for my little son”

Introduction
• Semantic ID

• A sequence of discrete ID numbers that captures the semantic meaning of a document.
• The objective is to ensure that the initial set of semantic IDs captures the coarse-grained document

semantics while the subsequent IDs delve into the details of its content in a hierarchical structure.

5

Root

0 1… …

0 1

010

0

0

1

000 001 010 100

Introduction
• How can we assign semantic IDs to documents?
• A straightforward way is to use the category information or external hierarchy.
• However, such external information not always exist.
• In many cases, we only have text associated with each document.

• Problem definition (Learning semantic IDs with text self-supervision)
• Input:

• A corpus of documents with texts.
• Output:

• Semantic ID for each document in the input corpus.

6

Existing works
• Two-step methodology
• Step 1: procure embeddings for documents with off-the-shelf text encoders.

• Step 2: specific techniques, e.g., rq-VAE or hierarchical clustering to derive IDs.

• Limitations
• Inherent mismatch between the distribution of the embeddings in the latent space

generated by encoder and the expected distribution for semantic indexing.

• Each step of this process introduces potential information loss.

7

Text Encoder rq-VAE/hierarchical clustering IDs

Our solution: LMIndexer
• Single step: Learn a language model as a semantic indexer

• This is non-trivial given that
• We do not have any ID supervision: Let’s use the self-supervision from text itself to

learn the IDs.

• The IDs are discrete rather than continuous (hard to optimize).

8

Language model (semantic indexer) IDs

Our solution: LMIndexer
• Single step: Learn a language model as a semantic indexer

• Learning Semantic IDs with Sequential Discrete Auto-reconstruction
• Self-supervision learning to alleviate the lack of ID supervision.
• Learn the semantic IDs with sequential discrete representations.

9

Language model (semantic indexer) IDs

Our solution: LMIndexer
• Learning Semantic IDs as Neural Sequential Discrete Representations
• We adopt an encoder-decoder Transformer (T5) as the base model.
• 𝑐!" denote the semantic ID of the document 𝑑 at the position 𝑖.
• We first learn the continuous representation at position 𝑡 as

• The continuous representation ℎ!# is then projected to a discrete representation by

10

Our solution: LMIndexer
• Reconstructing Document with Sequential Discrete Semantic ID Embeddings

• Basically, we use the semantic IDs 𝒄! to reconstruct the original document 𝑑.
• If this can be well-performed, this means that 𝒄! contains enough semantic information.
• However, solely based on 𝒄! is difficult. We consider provide some hints 𝑑".

• We adopt a shallow Transformer as the reconstructor.

11

Our solution: LMIndexer
• Reconstructing Document with Sequential Discrete Semantic ID Embeddings

• However, directly adopting the reconstruction objective with 𝒄! as input to the reconstructor will not
optimize the semantic encoder.

• The codebook look-up is a hard/discrete operation.
• To this end, we propose to approximate the argmax operation with

• In our implementation, we achieve this by adopting the “stop gradient” operation.
• The final reconstruction loss is

12

Our solution: LMIndexer
• Training self-supervised semantic indexer
• Progressive training: IDs have dependencies.

• Contrastive loss: promote distinction between documents that shared the same prefix.

• Commitment loss: force the semantic indexer to remember the previous learnt IDs.

13

Our solution: LMIndexer
• Training self-supervised semantic indexer
• Final loss: a combination of the three losses.

• Reconstructor collapse: constructor is performing badly and misguides the semantic
indexer.

• Posterior collapse: information provided by the semantic indexer is weak and noisy for
the reconstructor.

14

Our solution: LMIndexer
• Finetuning semantic indexer on downstream tasks
• Downstream tasks which take text as input and expect document IDs as output.
• E.g., recommendation (user history text as input, next item ID as output)
• E.g., retrieval (query as input and document ID as output)

15

Experiments
• Datasets:

• Amazon
• Beauty, Sports, Toys

• Wiki
• NQ320k

• Web
• MACRO 1M
• TREC_DL 1M

• Downstream tasks
• Recommendation
• Retrieval

16

Experiments: Learning Self-supervised Semantic ID
• Semantic ID Analysis (quantitative results)

• LMIndexer outperforms baselines consistently, which demonstrates that the IDs learned by LMIndexer are
more semantic-indicative.

17

Experiments: Learning Self-supervised Semantic ID
• Semantic ID Analysis (qualitative results)

• 𝑐! captures the coarse-grained category.
• 𝑐" further categorizes into fine-grained categories.

18

Experiments: Learning Self-supervised Semantic ID
• Training study

• Reconstructor collapse and posterior collapse exist without proper warm up operations.
• Contrastive loss can facilitate ID distinction and diversity.
• Commitment loss can force the semantic indexer remember the previous learned IDs.

19

Experiments: Downstream Tasks
• Sequential Recommendation

• LMIndexer outperforms the competitive baseline methods consistently and significantly.

20

Experiments: Downstream Tasks
• Sequential Recommendation

• The model performance increases as the semantic ID length or codebook size increases.

21

Experiments: Downstream Tasks
• Product Search

• LMIndexer outperforms the competitive baseline methods consistently and significantly.

22

Experiments: Downstream Tasks
• Product Search

• As the reconstructor layer increases, the quality of the semantic indexer and its generated IDs decreases.

23

Experiments: Downstream Tasks
• Document retrieval

• LMIndexer outperforms the competitive baseline methods consistently and significantly.

24

Conclusion

• In this work, we explore language models as semantic indexers and
learn the IDs with only one step.

• We propose a neural sequential discrete auto-reconstruction pipeline
to train the semantic indexer with self-supervision.

• We conduct experiments on real-world datasets from both e-
commerce and web and demonstrate the effectiveness of our method
on both recommendation and retrieval downstream tasks.

25

Thank You !

26

Subscribe and learn
more about our works!

Code, can be found here
https://github.com/PeterGriffinJin/LMIndexer!

https://github.com/PeterGriffinJin/LMIndexer

