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Abstract Numerical Experiments Algorithm

PINN-PI:
0  We use a PINN to solve the first-order PDE (2) for each i:

Solving nonlinear optimal control problems is a challenging task, particularly % Trajectories starting from different initial conditions under the optimal controller learned using PINN-PI M

for high-dimensional problems. We propose algorithms for model-based policy

iterations to solve nonlinear optimal control problems, ensuring convergence O Inverted Pendulum

U Cartpole

Trajectories of All States Over Time

U 2D Quadrotor O 3D Quadrotor

F(x,V;(x),DV;(x)) = 0,
subject to the boundary condition V;(0) = 0.

x € (),

through an iterative procedure that uses neural approximations for linear PDEs. Trajectories of All States Over Time Trajectories of All States Over Time Trajectories of All States Over Time
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0.50- Goal: find a physics-informed neural network solution V; y(x; 6)

by minimizing a loss:

We present two variants of the algorithms. 0]
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<+ ELM-PI, which can handle low-dimensional problems with high accuracy. 1- \ 0.05 1
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<+ PINN-PI, which has the potential to address high-dimensional problems.
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Loss(0) = Lresidual (0) t Lboundary (6) + Ldata (6).
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=/ e ol ~0.10{ {6 - Liesidual : theil residual error of the PDE;
0.50 1 ’ - . .
Background 2] | | | | | oy ~0.151 Lboundary : the boundary error;
0 2 K 8 10 ; ; P : : T : ; : . : " ; ; ;1 : 3 T0 2 L3ata - the data error or any side information desirable.

Time
% Consider a control-affine system: -

. i i ) . Update k;.1(x) by (3) for x € Q\{0} and set k;1(x) = 0
: % Comparison with reinforcement learning algorithms
x=f(x)+ gx)u, x(0) = x,. (1)

elsewhere.

L)

0 We assume f, g are continuously differentiable and £(0) = 0. 0 Inverted Pendulum Q Cartpole O 2D Quadrotor 3D Quadrotor Q Iterate until the desired accuracy or the maximum number of
D We WOI‘k on a CompaCt region Of interest Q Accumulated Cost Over Time Accumulated Cost Over Time 100 Accumulated Cost Over Time Accumulated Cost Over Time lteratlons 15 reaChed.
< We aim to compute optimal value and control w.r.t. the associated cost 1 :j’é’,,po 350 1 E :j’é’,,m o _ 0 o * ELM-PL
307 7 PR 200 ] L " i = — Q Consider V; y(x;0) := 8Ta(Wx + b).
_(® . T . ) . - LN .
JGow) = J; Q(o(t x0; w)) + uTR((t, x0; w))udt, g & 250 & o g O  The other steps remain the same.
where ¢(t, xo, u) is the solution to (1), and Q(-) & R(-) are positive definite. § j: g 200 § N § .-, & TFormal verification:
The optimal control u* is such that V"(x) = J(x,u") = Inf J(x, ), which should "o . ) a- We verify the Lyapunov conditions are satisfied (everywhere in Q)
solve the (nonlinear) HJB equation. 51 . 1 2 with a satisfiability modulo theories (SMT) solver [3] within the tool
ol ! | | | | | . oL : , : : : 5L | | | | | LyZNet [5].
< Policy iteration method approaches the optimal value by iteratively solving a 0 : Yo e 0 2 : : s D ° ? Yo = ° : et = \- /

Time (s)

simpler (linear) Lyapunov-type PDE, with u = kq(x):
% Comparison of ELM-PI, PINN-PI, and successive Galerkin algorithm (SGA)
on the inverted pendulum example.

< Performance of ELM-PI and PINN-PI on a synthetic n-
dimensional nonlinear problem.

Theoretical Analysis

1) [policy evaluation] Solve the (GHJB) PDE subject to V;(0) = 0 :

F(x, V;(x), DVi(x)) = SGA ELM-PI PINN-PI  Exact-PL
T _n. Problem & model si ELM-PI PINN-PI
DV;(x) - (f (x) + g(x)Ki(x)) + Q(x) — k() R()kK;(x) =0; (2) Order Time (s) Verified? m  Time (s) Verified? m  Time (s) Verified? e el O  Foreach i, Eq.(2) has a unique positive definite viscosity solution
) 1i . d h 11 . n m N Error Time (s) Error Time (s) 1
) [policy improvement] Update the controller using 2 4.80 W 50 0.11 Yo 50  255.15 e V; € C(Q) NnCH(Q\{0}).
1. T 4 19.37 Yes 100 0.24 Yes 100 256.53 Yes 5 800 4800 5.36E00 3222 3.63E-02  770.54 Q v*<V +1 < V;onQ foralli € {0’ 1,--- }
kip1(x) = —-R7H)g" ()DV{ (x).  (3) & 66.52 Yes 200  0.71 Yes 200 258.89 Vs 5 3200 16000  3.08E-01 6303.20 5.20E-02 1204.22 oo ) ‘
o . o . 3 21242 o 100 2.92 Ve 400 256.52 S 5 6400 32000  6.37E-02 53479.10 9.10E-02  5906.69 Q v,— V"
The limit value function V*(x) is a Lyapunov function. = 00 400 Tro) o e o
g J . Miccell 6 6400 38400  2.33E00 63403.53 1.38E-01 6995.10 %+ PINN (ELM) - PI:
% Miscellaneous
7 800 100000 - = 3.74E-02  4414.28
. . 0 Lorenz System 0 Inverted Pendulum 8 800 100000 : e 528E-02 4415.12 Let {Vi} and {41} be updated by exact-P1.
MOtlvatlon Trajectories of the closed-loop system for Lorenz system Learned Lyapunov Function Level sets 9 800 100000 - - 4.88E-02 4422.54 Let {Vl} and {’el+1} be updated by PINN'PI or ELM'PI Wlth f(\fo == KO‘
1.00 10 800 100000 = T 3.66E-02 4424.33 Th f . d 0 O h
. o s 11 800 100000 - — 8.29E-02  4424.00 en, tor any ¢ and ¢ > U, we can achieve
% In previous works [1,2], V;’s and V* were assumed to be C?! % ~
p =l Vi ' 12800 100000 - - 6.11E-02  4426.54 V(%) = Vi(0)| < 6, |Ri1(x) — Kip1(X)| < 0, Vx € Q.
0 Conditions not verified. | " . .
- oo . S oo n represents the dimension of the problem ; % Remark:
* n 0.04
Q Vi — V" may not be guaranteed. 025 m denotes the number of hidden units : Q  The proof shows the absolute continuity of the neural solutions
-0 0 . N indicates th ber of collocats - to the training errors on Q \ B;(0) for any & > 0.
. : o : - o | . .
% The solution may exhibit non-differentiability. \\\ HRAICates The MUMBER of COTOCAtion points O The convergence can be shown on Q \B.(0) using absolute
% The main goal is to answer the following questions: o ds sa 75 w0 @s #o ns 90 R . continuity and on B,(0)\{0} given the boundedness.

a0 Can neural approximations converge to the viscosity solution of the HJB?

a0 Can neural approximations efficiently compute solutions of the HJB with
high accuracy?

0 Can neural policy iteration overcome the curse of dimensionality?

Can neural approximations be guaranteed to lead to stabilizing controllers?

(

J

Appendix: Lyapunov Stability Theorem

Suppose there exists a V € C1(Q) that satisfies the conditions:

. V(0)=0;

 V&x)>0and DV(x) - f(x) <0,vx € Q\ {0}.

Then the origin is an asymptotically stable equilibrium point.

References

[2] Yu Jiang and Zhong-Ping Jiang. Robust adaptive dynamic programming. John Wiley & Sons, (2017).

[1] Randal W. Beard, George N. Saridis, and John T. Wen. Galerkin Approximation of the Generalized Hamilton-Jacobi-Bellman Equation. Automatica, 33.12 (1997), 2159-2177.

[3] Sicun Gao, Soonho Kong, and Edmund M Clarke. dReal: an SMT solver for nonlinear theories over the reals. In Proceedings of International Conference on Automated Deduction, (2013): 208-214.
[4] Jun Liu, Yiming Meng, Maxwell Fitzsimmons, and Ruikun Zhou. Physics-Informed Neural Network Lyapunov Functions: PDE Characterization, Learning, and Verification. arXiv preprint arXiv:2312.09131 (2023).
[5] Jun Liu, Yiming Meng, Maxwell Fitzsimmons, and Ruikun Zhou. LyZNet: A Lightweight Python Tool for Learning and Verifying Neural Lyapunov Functions and Regions of Attraction. In Proceedings of HSCC (2024).




