
Background
v Consider a control-affine system:

q We assume f, g are continuously differentiable and 𝑓 0 = 0.
q We work on a compact region of interest Ω.

v We aim to compute optimal value and control w.r.t. the associated cost

Physics-Informed Neural Network Policy Iteration:
Algorithms, Convergence, and Verification

Abstract
Solving nonlinear optimal control problems is a challenging task, particularly
for high-dimensional problems. We propose algorithms for model-based policy
iterations to solve nonlinear optimal control problems, ensuring convergence
through an iterative procedure that uses neural approximations for linear PDEs.

We present two variants of the algorithms.
v ELM-PI, which can handle low-dimensional problems with high accuracy.
v PINN-PI, which has the potential to address high-dimensional problems.

Yiming Meng*†, Ruikun Zhou*‡, Amartya Mukherjee‡, Maxwell Fitzsimmons‡, Christopher Song‡, and Jun Liu‡

* Equal Contribution
† Coordinated Science Laboratory, University of Illinois Urbana-Champaign

‡ Department of Applied Mathematics, University of Waterloo

Motivation
v In previous works [1,2], 𝑉!’s and 𝑉∗ were assumed to be 𝐶#.

Numerical Experiments
v Trajectories starting from different initial conditions under the optimal controller learned using PINN-PI

Theoretical Analysis
v Exact-PI:

Algorithm
v PINN-PI:

𝑥̇ = 𝑓 𝑥 + 𝑔 𝑥 𝑢, 𝑥 0 = 𝑥$. (1)

July 21st – 27th, 2024, Vienna, Austria

𝐽 𝑥$, 𝑢 = ∫$
% 𝑄 𝜙 𝑡, 𝑥$; 𝑢 + 𝑢&𝑅 𝜙 𝑡, 𝑥$; 𝑢 𝑢𝑑𝑡,

where 𝜙 𝑡, 𝑥$, 𝑢 is the solution to (1), and 𝑄(7) & 𝑅(7) are positive definite.
The optimal control 𝑢∗ is such that 𝑉∗(𝑥) = 𝐽 𝑥, 𝑢∗ = inf

'∈𝒰
𝐽(𝑥, 𝑢), which should

solve the (nonlinear) HJB equation.

v Policy iteration method approaches the optimal value by iteratively solving a
simpler (linear) Lyapunov-type PDE, with 𝑢 = 𝜅$ 𝑥 :

1) [policy evaluation] Solve the (GHJB) PDE subject to 𝑉! 0 = 0：

𝐹(𝑥, 𝑉! 𝑥 , 𝐷𝑉! 𝑥) ≔
𝐷𝑉! 𝑥 ⋅ 𝑓 𝑥 + 𝑔 𝑥 𝜅! 𝑥 + 𝑄 𝑥 − 𝜅!(𝑥)&𝑅 𝑥 𝜅! 𝑥 = 0 ; (2)

2) [policy improvement] Update the controller using

𝜅!*# 𝑥 = − #
+𝑅

,# 𝑥 𝑔& 𝑥 𝐷𝑉!& 𝑥 . (3)

The limit value function 𝑉∗ 𝑥 is a Lyapunov function.

q Conditions not verified.
q 𝑉!

- ! 𝑉∗ may not be guaranteed.

v The solution may exhibit non-differentiability.

v The main goal is to answer the following questions:
q Can neural approximations converge to the viscosity solution of the HJB?
q Can neural approximations efficiently compute solutions of the HJB with

high accuracy?
q Can neural policy iteration overcome the curse of dimensionality?
q Can neural approximations be guaranteed to lead to stabilizing controllers?

q We use a PINN to solve the first-order PDE (2) for each i:

subject to the boundary condition 𝑉! 0 = 0.
𝐹 𝑥, 𝑉! 𝑥 , 𝐷𝑉! 𝑥 = 0, 𝑥 ∈ Ω,

Goal: find a physics-informed neural network solution 𝑉!,/ 𝑥; 𝜃
by minimizing a loss:

Loss(𝜃) = ℒresidual (𝜃) + ℒboundary (𝜃) + ℒdata (𝜃).

§ ℒresidual : the residual error of the PDE;
§ ℒboundary : the boundary error;
§ ℒdata : the data error or any side information desirable.

q Update 𝜅!*# 𝑥 by (3) for 𝑥 ∈ Ω\{0} and set 𝜅!*# 𝑥 = 0
elsewhere.

q Iterate until the desired accuracy or the maximum number of
iterations is reached.

v ELM-PI:
q Consider 𝑉!,/ 𝑥; 𝜃 ≔ 𝜃&𝜎 𝑊𝑥 + 𝑏 .
q The other steps remain the same.

v Comparison with reinforcement learning algorithms

q Inverted Pendulum

� � � �
 ��
����

-����

-����

����

����

����

��	�

�
��

��

��������������������
���������������

� � � � � ��
����

(�

(�

�

�

�

�

��

�

��

��
�������������	�����
����
��������

� � � � 	 ��

���

*���

*���

*���

���

���

���

���

���

��
��

��

���������������
���������������
���

� � � � 	 ��

���

*����

*����

*����

����

����

����

����

��
��

��

���������������
���������������
���

v Comparison of ELM-PI, PINN-PI, and successive Galerkin algorithm (SGA)
on the inverted pendulum example.

v Performance of ELM-PI and PINN-PI on a synthetic n-
dimensional nonlinear problem.

v Miscellaneous

• 𝒏 represents the dimension of the problem；

• 𝒎 denotes the number of hidden units；

• 𝑵 indicates the number of collocation points.

v Formal verification:
We verify the Lyapunov conditions are satisfied (everywhere in 𝛀)
with a satisfiability modulo theories (SMT) solver [3] within the tool
LyZNet [5].

q For each 𝑖, Eq.(2) has a unique positive definite viscosity solution
𝑉! ∈ 𝐶 Ω ∩ 𝐶#(Ω \{0}).

q 𝑉∗ ≤ 𝑉!*# ≤ 𝑉! on Ω for all 𝑖 ∈ {0, 1,⋯ }.
q 𝑉!

- ! 𝑉∗.

v PINN (ELM) - PI:
Let {𝑉!} and {𝜅!*#} be updated by exact-PI.
Let {]𝑉!} and {𝜅̂!*#} be updated by PINN-PI or ELM-PI with 𝜅̂$ = 𝜅$.
Then, for any 𝑖 and 𝜃 > 0, we can achieve

]𝑉! 𝑥 − 𝑉!(𝑥) ≤ 𝜃, 𝜅̂!*# 𝑥 − 𝜅!*#(𝑥) ≤ 𝜃, ∀𝑥 ∈ Ω.

v Remark:

q The proof shows the absolute continuity of the neural solutions
to the training errors on Ω \𝐵0 0 for any 𝜀 > 0.

q The convergence can be shown on Ω \𝐵0 0 using absolute
continuity and on 𝐵0 0 \{0} given the boundedness.

��

-���
-���

���
���

���

� �

-���
-���

���
���

���
���

���

���

���

��
�������
��������������

-��� -��� ��� ��� ���
��

-����

-����

-����

-����

����

����

����

����

����
� �

����������

����
�	

q Cartpole q 2D Quadrotor q 3D Quadrotor

q Inverted Pendulum q Cartpole q 2D Quadrotor q 3D Quadrotor

q Inverted Pendulumq Lorenz System

Suppose there exists a V ∈ 𝐶"(Ω) that satisfies the conditions:
• 𝑉(0) = 0;
• 𝑉(𝑥) > 0 and 𝐷𝑉 𝑥 ⋅ 𝑓 𝑥 < 0, ∀𝑥 ∈ Ω ∖ {0}.

Then the origin is an asymptotically stable equilibrium point.

Appendix: Lyapunov Stability Theorem

R
ef
er
en
ce
s [1] Randal W. Beard, George N. Saridis, and John T. Wen. Galerkin Approximation of the Generalized Hamilton-Jacobi-Bellman Equation. Automatica, 33.12 (1997), 2159-2177.

[2] Yu Jiang and Zhong-Ping Jiang. Robust adaptive dynamic programming. John Wiley & Sons, (2017).
[3] Sicun Gao, Soonho Kong, and Edmund M Clarke. dReal: an SMT solver for nonlinear theories over the reals. In Proceedings of International Conference on Automated Deduction, (2013): 208–214.
[4] Jun Liu, Yiming Meng, Maxwell Fitzsimmons, and Ruikun Zhou. Physics-Informed Neural Network Lyapunov Functions: PDE Characterization, Learning, and Verification. arXiv preprint arXiv:2312.09131 (2023).
[5] Jun Liu, Yiming Meng, Maxwell Fitzsimmons, and Ruikun Zhou. LyZNet: A Lightweight Python Tool for Learning and Verifying Neural Lyapunov Functions and Regions of Attraction. In Proceedings of HSCC (2024).

