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Modern LLMs are becoming larger and 
computational costly
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Data-center GPUs’ capacities 
cannot scale their memory as 

fast as modern LLMs’ sizes.



Current solutions to run LMs efficiently
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Category Method Training Time Training Mem. Inference Time Inference Mem.

PEFT
Adapter +++ - + +

LoRA +++ - = =

Pruning
MvP +++ + - -
CoFi +++ ++ --- -

Combined
SPA +++ + --- -
LRP +++ - --- -

Existing efficient methods often 
requires longer training time to 

converge the LM

Pruning methods tend to cost 
extra training memory due to 

knowledge distillation
Combined methods suffer from 

substantial end-task 
performance loss



Improve training and inference efficiency

Question: can we combine the benefits of PEFT and pruning to 
improve both training and inference efficiency while 
maintaining task performance?



Intuitions for improving LM efficiency
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Task 1

Benefiting both 
training and inference 

efficiency!

Fast and better 
convergence!



Our solution – APT: pruning & tuning 
adaptively
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Our solution – pruning tuning



Low-cost adaptive pruning
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=Sensitivity Kurtosis+

Maximizing salience 
given cost constraints



Efficient adaptive tuning
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Reuse the sensitivity 
calculation for pruning

Sum Sort Select



Evaluation setup

• LM backbones and tasks:
• Small-scale LMs: 

• BERT, RoBERTa: NLU tasks – GLUE, SQuAD
• T5: NLU & NLG tasks – GLUE, CNN/DM

• Large LMs: 
• LLaMa2 7B & 13B: standard few-shot tasks – ARC, HellaSwag, MMLU, TruthfulQA

• Metrics:
• Task accuracy/F1/ROUGE score
• Training efficiency: time to accuracy (seconds), training peak memory 

consumption (MB)
• Inference efficiency: peak memory (MB), relative speedup
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TTA: training time to a percentage of 
the baseline (finetuning) accuracy



Evaluation baselines
Direct baselines:
• Full-parameter finetuning
• LoRA
PEFT, pruning, and their combinations:
• LoRA+Prune: conducting post-training pruning (Mask-tuning; Kwon, 

et al., 2022) after LoRA-tuning
• Prune+Distill: structured pruning plus coarse-to-fine grained 

distillation (CoFi; Xia, et al., 2022)
• LoRA+Prune+Distill: using CoFi for pruning, but tuning LoRA only
• LLMPruner (Ma, et al., 2023): state-of-the-art structured pruning 

method on billion-level LLMs.
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APT speeds up small LMs pruning 8x 
faster compared to LoRA+Prune baseline
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Training convergence time comparison between APT and baselines

RoBERTa T5

1. Retraining-free pruning
2. Adaptive pruning: reduced 
training step time
3. Adaptive tuning: 
accelerate convergence



APT prunes LLMs with only 30% training 
memory consumption compared to LLMPruner
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Memory consumption reduced 
thanks to the pruning-before-
finetuning scheduling



APT recovers task accuracy for small and 
large LMs
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APT recovers task accuracy for small and 
large LMs
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APT achieves 2.5%-9.9% higher task 
performance than the LoRA+Prune baseline
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APT reaches on-par performance with the 
Prune+Distill baseline but trains 2.5× faster 
and costs only 41.6% memory.
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APT greatly reduces the training cost 
by adaptive tuning + self-distillation



Each component in APT is effective
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Adaptive tuning and self-distillation 
should be working together to recover 

pruned LM’s performance.
Without (adaptive) pruning, APT 
can be seen as a PEFT method 

that converges LMs faster than 
baselines.



APT key takeaways and impact

• We propose APT, a new adaptive paradigm to prune and tune LMs effectively, targeting 
both training and inference efficiency via APT adapters.

• APT dynamically adjusts (adds/reduces) APT adapter input/output dimensions and the 
rank (rapt ), thus accelerating LM training convergence and also reducing inference costs. 

• APT preserves LM task performance while speeding up small-scaled LMs’ fine-tuning by 
up to 8× and reducing large LMs’ training memory footprint by up to 70%.
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Future work

• Even though APT proposes an efficient way to prune and tune LMs, it is 
definitely not always the optimal method for all LMs

• We hope that future work will focus on:
• Adopting APT to a wider variety of PEFT backbones, e.g., prefix-tuning, prompt-

tuning, parallel-adapter, VeRA, DoRA, etc.

• Aiming at accurate, efficient, retraining-free pruning and distillation methods of 
large, billion-level LMs

• Adapting APT with other efficient methods together for further inference efficiency 
gains, such as quantization, MoEfication, etc.
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