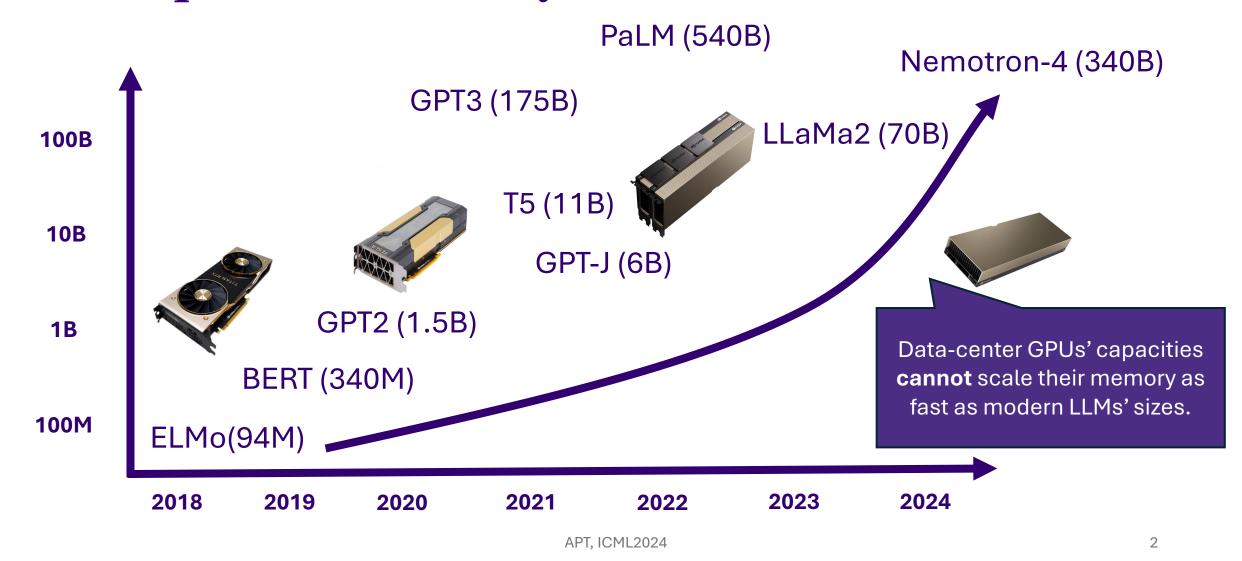
APT: Adaptive Pruning and Tuning Pretrained Language Models for Efficient Training and Inference

Bowen Zhao

Hanna Hajishirzi

Qingqing Cao

Modern LLMs are becoming larger and computational costly



Current solutions to run LMs efficiently

Category	Method	Training Time		Training Mem.		Inference Time	Inference Mem.	
PEFT	Adapter		+++		-		+	+
	LoRA		+++		-		=	=
Pruning	MvP		+++		+		-	-
	CoFi		+++		++			-
Combined	SPA		+++		+			-
	LRP		+++		-			-

Combined methods suffer from substantial end-task performance loss

Existing efficient methods often requires longer training time to converge the LM

Pruning methods tend to cost extra training memory due to knowledge distillation

APT, ICML2024

Improve training and inference efficiency

Question: can we combine the benefits of **PEFT and pruning** to improve both **training and inference efficiency** while maintaining **task performance**?

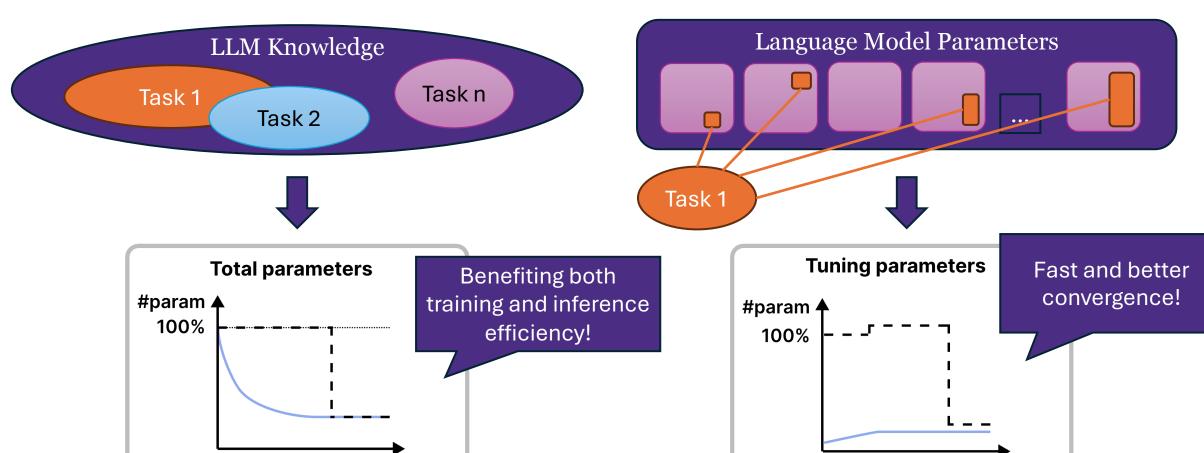
Intuitions for improving LM efficiency

training

APT

Post-fine-

tune pruning



APT, ICML2024 5

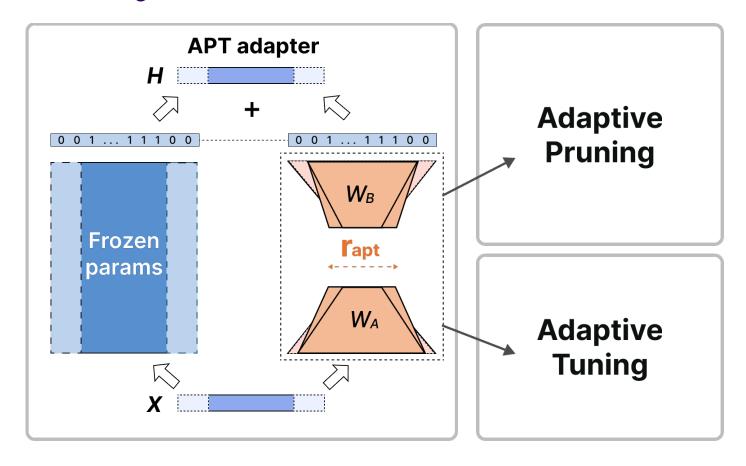
Post-fine-

tune pruning

training

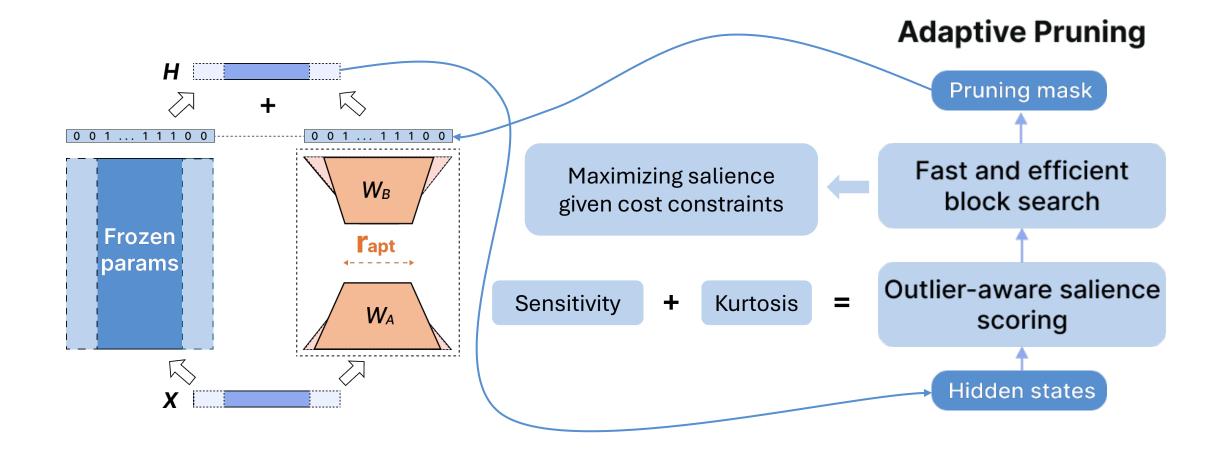
APT

Our solution – APT: pruning & tuning adaptively

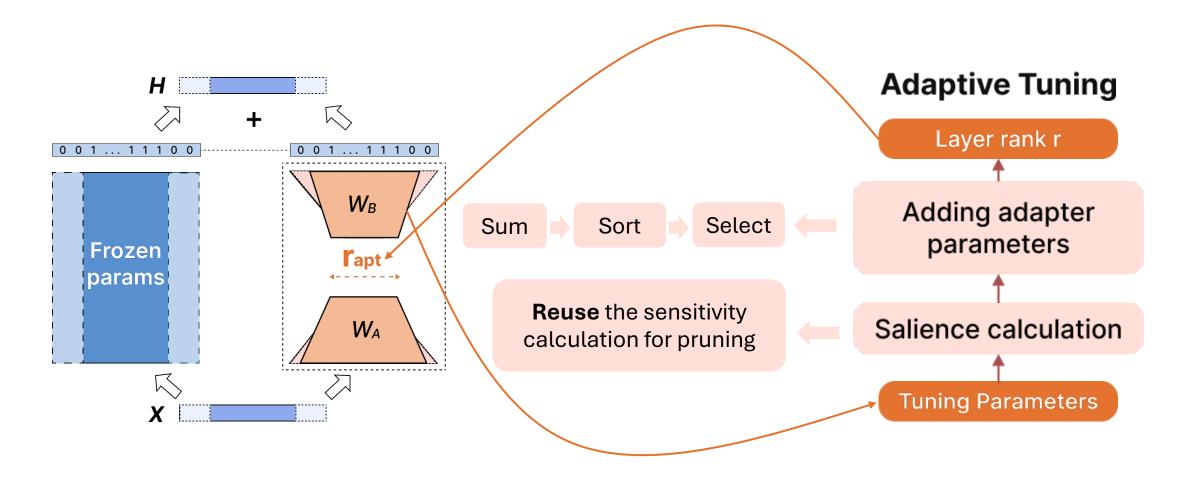


APT, ICML2024

Low-cost adaptive pruning



Efficient adaptive tuning



APT, ICML2024

Evaluation setup

- LM backbones and tasks:
 - Small-scale LMs:
 - BERT, RoBERTa: NLU tasks GLUE, SQuAD
 - T5: NLU & NLG tasks GLUE, CNN/DM
 - Large LMs:
 - LLaMa2 7B & 13B: standard few-shot tasks ARC, HellaSwag, MMLU, TruthfulQA
- Metrics:
 - Task accuracy/F1/ROUGE score
 - Training efficiency: time to accuracy (seconds), training peak memory consumption (MB)
 - Inference efficiency: peak memory (MB), relative speedup

TTA: training time to a percentage of the baseline (finetuning) accuracy

Evaluation baselines

Direct baselines:

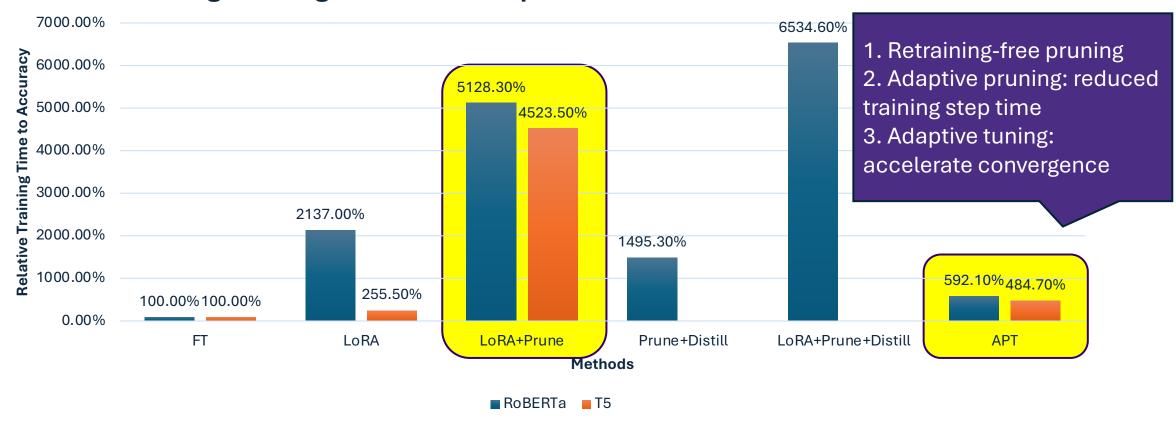
- Full-parameter finetuning
- LoRA

PEFT, pruning, and their combinations:

- LoRA+Prune: conducting post-training pruning (Mask-tuning; Kwon, et al., 2022) after LoRA-tuning
- Prune+Distill: structured pruning plus coarse-to-fine grained distillation (CoFi; Xia, et al., 2022)
- LoRA+Prune+Distill: using CoFi for pruning, but tuning LoRA only
- LLMPruner (Ma, et al., 2023): state-of-the-art structured pruning method on billion-level LLMs.

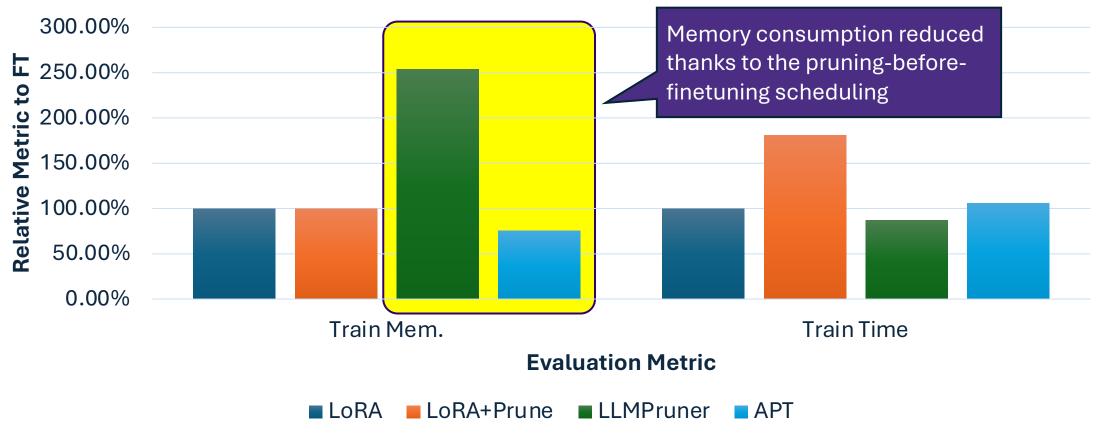
APT speeds up small LMs pruning 8x faster compared to LoRA+Prune baseline

Training convergence time comparison between APT and baselines



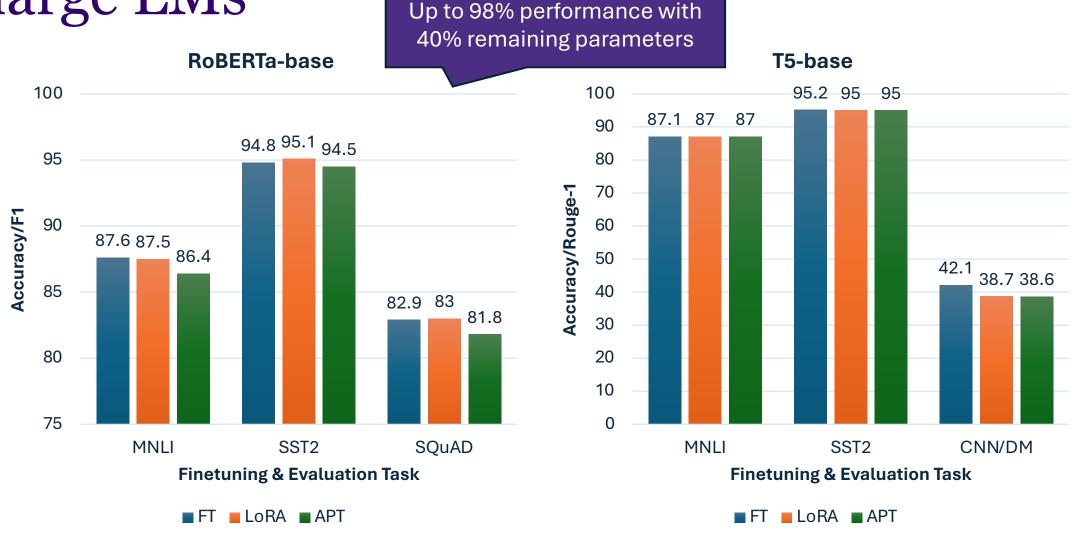
APT prunes LLMs with only 30% training memory consumption compared to LLMPruner

Relative Training Time and Memory of LLaMa2-7B

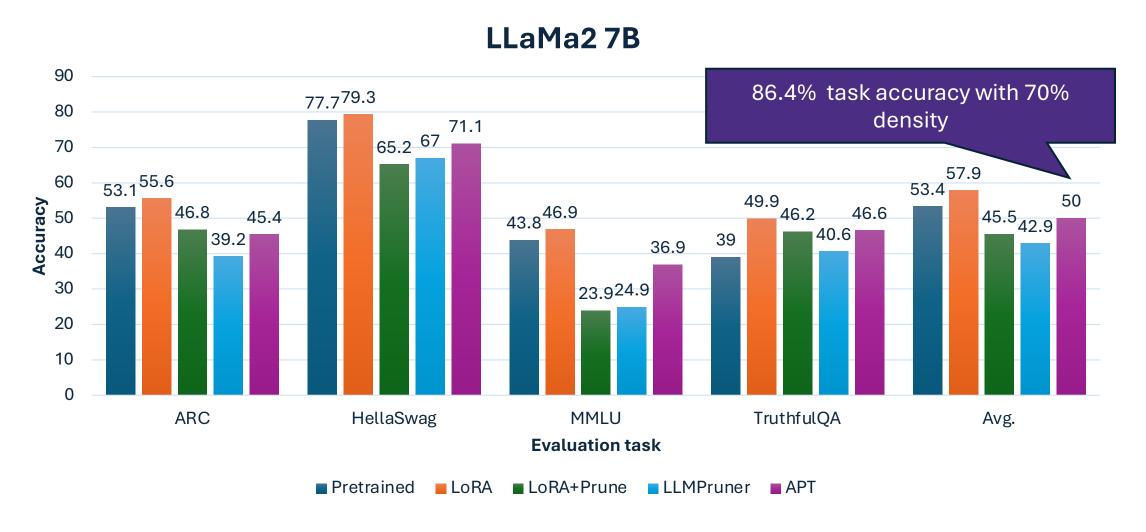


APT recovers task accuracy for small and large LMs

Up to 98% performance with



APT recovers task accuracy for small and large LMs

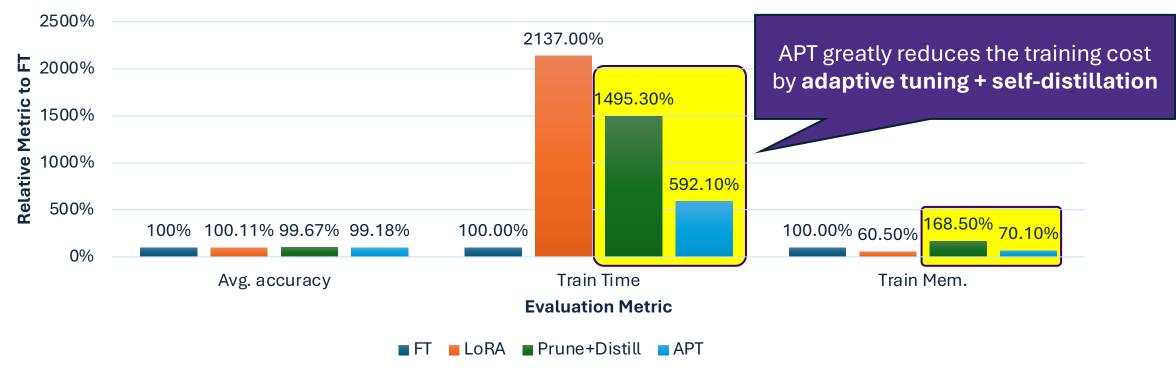


APT achieves 2.5%-9.9% higher task performance than the LoRA+Prune baseline

Performance comparison between APT and LoRA+Prune

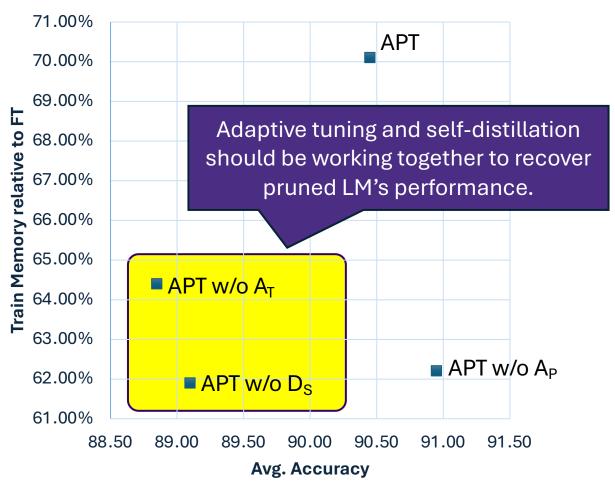
APT reaches on-par performance with the Prune+Distill baseline but trains 2.5× faster and costs only 41.6% memory.

Performance and training efficiency of APT compared to baselines

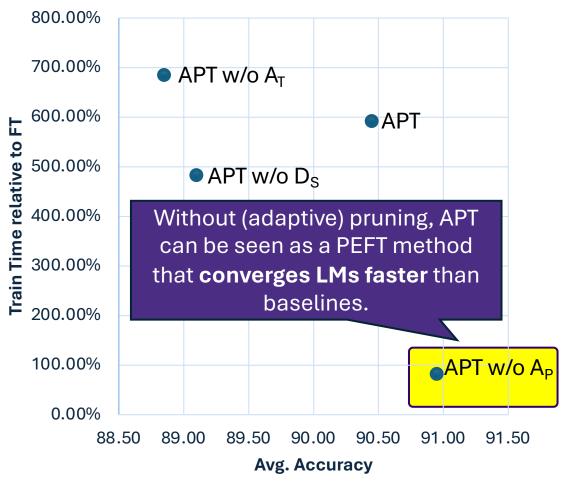


Each component in APT is effective

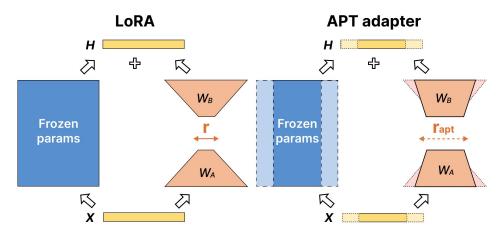
Accuracy - Train Memory Tradeoff



Accuracy - Train Time Tradeoff



APT key takeaways and impact



- We propose APT, a new adaptive paradigm to prune and tune LMs effectively, targeting both training and inference efficiency via APT adapters.
- APT dynamically adjusts (adds/reduces) APT adapter input/output dimensions and the rank (r_{apt}) , thus accelerating LM training convergence and also reducing inference costs.
- APT preserves LM task performance while speeding up small-scaled LMs' fine-tuning by up to 8× and reducing large LMs' training memory footprint by up to 70%.

Future work

- Even though APT proposes an efficient way to prune and tune LMs, it is definitely not always the optimal method for all LMs
- We hope that future work will focus on:
 - Adopting APT to a wider variety of PEFT backbones, e.g., prefix-tuning, prompt-tuning, parallel-adapter, VeRA, DoRA, etc.
 - Aiming at accurate, efficient, retraining-free pruning and distillation methods of large, billion-level LMs
 - Adapting APT with other efficient methods together for further inference efficiency gains, such as quantization, MoEfication, etc.

APT: Adaptive Pruning and Tuning Pretrained Language Models for Efficient Training and Inference

Bowen Zhao

Hanna Hajishirzi

Qingqing Cao

Email: roimgame@gmail.com

X (Twitter): @BowenROIM

LinkedIn: bowen-zhao-760b83225

