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•  A small perturbation to the input can cause misclassification to a well-trained neural network.

Adversarial Attacks

Figure: Picture from Goodfellow et al. (2015)
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•  A small perturbation to the input can cause misclassification to a well-trained neural network.

Adversarial Attacks
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Panda 
57.7% confidence

Gibbon 
99.3% confidence

How to defend against these attacks?



ℒCE( fθ(x), y)

BackPropagation

Given a pretrained model, how can we transform it to a robust one?

Adversarial Training
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Given a pretrained model, how can we transform it to a robust one 
with no access to train data? 

Adversarial 
Sample

BackPropagation
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Adversarial Training

ℒCE( fθ(x), y)



Problem Scenario
Why the need to achieve robustness “data-free”?

• Training data is kept private for privacy / security / proprietary reasons. 

• Attack vulnerability exists in most vanilla-trained DNNs.

• However, existing methods for robustness naturally assumes train dataset is always 

available. (Unrealistic)

privacy-sensitive 
dataset

proprietary-sensitive 
dataset

security-sensitive 
dataset

unavailable!
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• Training data is kept private for privacy / security / proprietary reasons. 

• Attack vulnerability exists in all vanilla-trained DNNs.

• However, existing methods for robustness naturally assumes train dataset is always 

available. (Unrealistic)

Problem Scenario
Why the need to achieve robustness “data-free”?

privacy-sensitive datasetproprietary-sensitive datasetsecurity-sensitive dataset

unavailable!“Why can’t we just use another dataset?” 
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Motivational Experiment
Using an alternative dataset
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Biomedical Dataset 
(MedMNIST-V2)
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Motivational Experiment
Using an alternative dataset

• Conventional AT becomes ineffective without the original dataset.

PGD-10 ( )ϵ = 8/255

Train Data == Attack Data
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Motivational Experiment
Using an alternative dataset

Little to no robustness!
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• Conventional AT becomes ineffective without the original dataset.

PGD-10 ( )ϵ = 8/255
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Proposed Method
Overall Procedure
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Proposed Method
Overall Procedure
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Key Challenge 2: Poor Generalization 
to Real Adversarial SamplesKey Challenge 1: Limited Diversity
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Key Challenge 1: Limited Diversity

Given a set of synthesis loss functions,
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Conventional approach:

ℒSynth = α1ℒsynth1
+ α2ℒsynth2

+ α3ℒsynth3

Diversified Sample Synthesis (DSS)

ℒSynth =
|𝕊|

∑
i=1

αiℒSynthi αi ∼ U(0,1)

Dynamically modulate the coefficients for each batch

Inter-batch diversity
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Key Challenge 2: Poor Generalization 
to Real Adversarial Samples

Conceptual Diagram of 
Generalization Gap

Real Synthetic
CIFAR-10
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Key Challenge 2: Poor Generalization 
to Real Adversarial Samples

ℒDFShield = KL(S( ̂x), T( ̂x)) + λ1KL(S( ̂x′￼), T( ̂x)) + λ2KL(S( ̂x′￼), S( ̂x))

Training loss using soft-guidance only

• Artificial labels do not align with human perception.

• Smoothness term helps prevent being overly sensitive to small 

changes in the input

ℒDFShield = clean accuracy

robustness training

smoothness term+λ2KL(S( ̂x′￼), S( ̂x))

+λ1KL(S( ̂x′￼), T( ̂x))

KL(S( ̂x), T( ̂x))

Cat

Artificial Label

Rabbit

Human Perception
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Key Challenge 2: Poor Generalization 
to Real Adversarial Samples

Gradient refinement for smoother loss surface

Ak =
1
B

B

∑
b=1

sign(g(b)
k )

• Compute parameter-wise sign agreement score across 
different batches 

g*k = Φ(Ak)
B

∑
b=1

1{Ak⋅g(b)
k >0} ⋅ g(b)

k , Φ(Ak) = {1, if  |Ak | ≥ τ,
0, otherwise,

• Mask high-fluctuating parameters before update

TRADES 
(baseline)

 
(ours)

ℒDFShield

+ GradRefine + GradRefine



Evaluation
Biomedical Dataset (MedMNIST-V2)
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upto 25%p difference



Evaluation
Biomedical Dataset (MedMNIST-V2)
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Evaluation
General Benchmark Dataset 

• Existing data-free methods fail to achieve meaningful 
robustness.


• Ours show resistance to both weaker (PGD) and 
stronger attacks (AA).
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Thank you!
hylee817@snu.ac.kr

DataFreeShield: Defending Adversarial Attacks 
without Training Data
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