
TLDR
• We introduce a unified optimizer framework that can generalize several known 

optimizers and dynamically learn the most suitable one during training.

• We parameterize the space of optimizers and dynamically search through it using 
hyper-gradient descent during training.. 

• Theoretically, we show that interpolations of optimizers might result in faster 
convergence (in constants) compared to individual components. 

• Empirically, our method outperforms AdamW and other popular optimizers in many 
settings. In particular, MADA outperforms the competing methods in GPT-2 pre-
training/fine-tuning on OpenWebText and Shakespeare datasets, in training ResNet 
and CNN architecture on CIFAR-10. 

Parameterized Optimizers Training Curves

Motivation for a Unified Optimizer

MADA: Meta-Adaptive Optimizers
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Figure 1 [1]. Different optimizers perform better in different 
tasks, Adam remains the most popular especially for LLMs. 

Q: Can we find a meta optimizer that automatically chooses what 
optimizer to use during training?

A Unified Framework for Adaptive 
Optimizers

where 𝛼𝑡 > 0 is learning rate and 𝜖 > 0 is stability constant 

Table 1. A unified framework to express adaptive optimizers.

Existing Optimizers
Parameterization

via interpolations
Parameterized Optimizer

first-order moment second-order moment

update term

𝛽1, 𝛽2, 𝛽3, 𝑐, 𝜌, 𝛾 are learnable parameters. Adam: 𝛽3 = 0, 𝑐 = 1, 𝜌 = 1, 𝛾 = 1;	AVGrad:	 𝛽3= 0, 𝑐 = 1, 𝜌 =
0, 𝛾 = 1;	Yogi:	𝛽3= 0, 𝑐 = 0, 𝜌 = 1, 𝛾 = 1;	Lion: 𝛽3 = 0, 𝑐 = 1, 𝜌 = 1, 𝛾 = 0;	Adan: 𝑐 = 1, 𝜌 = 1, 𝛾 = 1.

• 𝒪𝑞 denotes the parameterized 
optimizer with parameter set 𝑞, 𝒟 
denotes the domain of the 
parameters. 

• At each iteration, we first update 
the model parameters using the 
meta-optimizer; and then we 
update the optimizer parameters 
through hyper-gradient descent. 
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Experiments
• Language Model Experiments: Pre-training GPT-2 (125M) on OpenWebText and a 

10M model on Shakespeare, fine-tuning GPT-2 (1.5B) on Shakespeare. Measure 
perplexity on popular language datasets.

• Vision Experiments: Training ResNet-9 and 5 layer CNN on CIFAR-10.

• Baselines: Recently proposed adaptive optimizers, HyperAdam [2] where only 𝛽#, 𝛽$ 
are learned, SGD with momentum. 

Figure 2  Validation and training losses of competing methods on OpenWebText for 
training GPT-2 (125M) model.
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Figure 3  Final training losses of AdamW, MADA, HyperAdam with respect to different 
initial 𝜷𝟏, 𝜷𝟐  on Shakespeare dataset for training a 10M model. MADA yields lower 
loss for a wider region illustrating its robustness to initialization.

Interpolated optimizers can have faster convergence than individual components:


