

Descent

Kaan Ozkara¹, Can Karakus², Parameswaran Raman², Mingyi Hong^{2,3}, Shoham Sabach^{2,4}, Branislav Kveton², Volkan Cevher^{2,5} ¹UCLA ²Amazon Web Services ³University of Minnesota ⁴Technion ⁵EPFL

ti dr

- We introduce a unified optimizer framework that can generalize several known optimizers and dynamically learn the most suitable one during training.
- We parameterize the space of optimizers and dynamically search through it using hyper-gradient descent during training..
- Theoretically, we show that interpolations of optimizers might result in faster convergence (in constants) compared to individual components.
- Empirically, our method outperforms AdamW and other popular optimizers in many settings. In particular, MADA outperforms the competing methods in GPT-2 pretraining/fine-tuning on OpenWebText and Shakespeare datasets, in training ResNet and CNN architecture on CIFAR-10.

Motivation for a Unified Optimizer

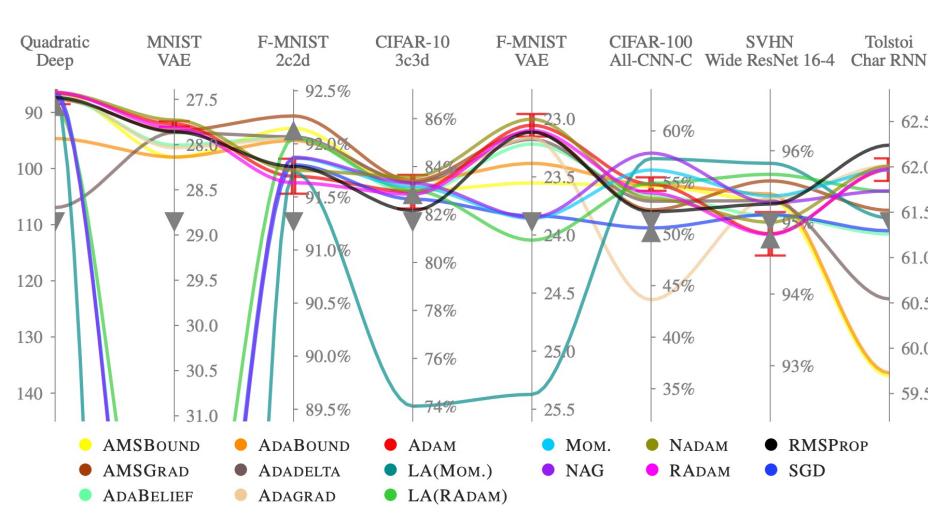
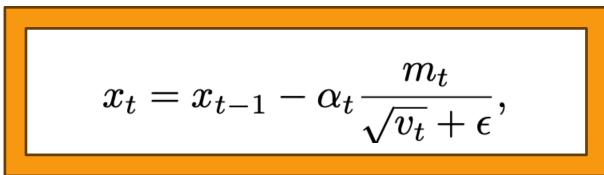



Figure 1 [1]. Different optimizers perform better in different tasks, Adam remains the most popular especially for LLMs.

Q: Can we find a meta optimizer that automatically chooses what optimizer to use during training?

A Unified Framework for Adaptive Dptimizers

where $\alpha_t > 0$ is learning rate and $\epsilon > 0$ is stability constant

Table 1. A unified framework to express adaptive optimizers.

Method	First-Order Moment	Second-O					
Adam Kingma and Ba, 201	$[5] \qquad m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$	$v_t = \beta_2 v_t$					
AMSGrad [Reddi et al., 2013	8] $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$	$ar{v}_t = eta_2 ar{v}_t, \ v_t = \mathrm{m}$					
Adan [Xie et al., 2023]	$\bar{m}_{t} = \beta_{1}\bar{m}_{t-1} + (1 - \beta_{1})g_{t}$ $n_{t} = \beta_{3}n_{t-1} + (1 - \beta_{3})(g_{t} - g_{t-1})$ $m_{t} = \bar{m}_{t} + \beta_{3}n_{t}$	$\hat{g}_t = g_t + v_t = eta_2 v_t.$					
Yogi Zaheer et al., 2018	$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$	$\hat{g}_t = v_{t-1} + g_t$ $v_t = eta_2 v_t$					

MADA: Meta-Adaptive Optimizers through Hyper-gradient

- 60.0%
- 59.5%

-Order Moment $\max\{v_{t-1}, \bar{v}_t\}$ $_{s}+eta_{3}(g_{t}-g_{t-1})$ $v_{t-1} + (1 - \beta_2)\hat{g}_t^2$ $-g_t^2 \cdot \operatorname{sign}(g_t^2 - v_{t-1})$ $v_t = \beta_2 v_{t-1} + (1 - \beta_2)\hat{g}_t$

Parameterized Optimizers

Existing Optimizers

Parameterization

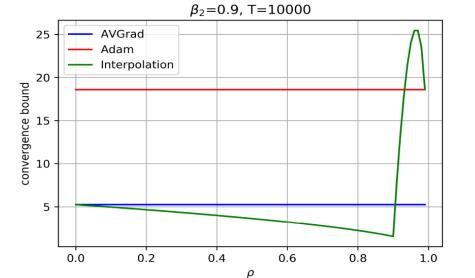
via interpolations

first-order moment

 $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$ $n_t = \beta_3 n_{t-1} + (1 - \beta_3)(g_t - g_{t-1})$ $u_t = Lion(g_t, m_t^{lion}),$

update term

 $x_{t-1} = x_{t-1} - \lambda \alpha_t x_{t-1}$ $x_t = x_{t-1} - \alpha_t \Big(\gamma \frac{m_t + \beta_3 n_t}{\sqrt{v_t} + \epsilon} + (1 - \gamma) \operatorname{sign}(u_t) \Big),$


 $\beta_1, \beta_2, \beta_3, c, \rho, \gamma$ are learnable parameters. Adam: $\beta_3 = 0, c = 1, \rho = 1, \gamma = 1$; AVGrad: $\beta_3 = 0, c = 1, \rho = 1$ $0, \gamma = 1$; Yogi: $\beta_3 = 0, c = 0, \rho = 1, \gamma = 1$; Lion: $\beta_3 = 0, c = 1, \rho = 1, \gamma = 0$; Adan: $c = 1, \rho = 1, \gamma = 1$.

Interpolated optimizers can have faster convergence than individual components:

Theorem 1 (Convergence of interpolation of AVGrad and Adam without momentum). Under the assumptions above and $\alpha_t = \frac{\alpha}{\sqrt{t}}$ for some $\alpha > 0$, and for $\rho_t = \frac{\rho}{t}$ for a constant ρ :

 $G_T \le E(T) \left[\frac{C_1}{T} + \frac{C_2 \ln \left(E(T) \right)}{T} + C_3 \left[\ln \left(\frac{\rho}{\beta_2} \right) \right]_+ \right],$

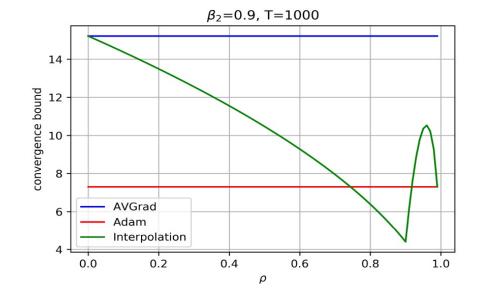
where, $G_T = \frac{1}{T} \sum_{t=1}^T \|\nabla F(x_t)\|^2$, $E(T) = \frac{\sqrt{\rho + (1-\rho)T}}{\sqrt{1-\beta_2}}$, and C_1, C_2, C_3 are constants independent of T, ρ, β_2 .

MADA: Meta-Adaptive Optimizers

Algorithm 1 Pseudocode for a generic MADA **Input:** A parameterized optimizer \mathcal{O}_q , where $q \in \mathcal{D}$, a hyper-learning rate α , number of total iterations T. **Init.:** x_0 and q_0 .

- 1: for t=1 to T do
- Sample f_t .
- Update the model parameters:
- $x_t = \mathcal{O}_{q_{t-1}}(x_{t-1}).$
- 4: Update the optimizer coefficients:
- $q_t = \Pi_{\mathcal{D}} \left[q_{t-1} \alpha \nabla_q f_t(x_{t-1}) \right].$
- 5: **end for**

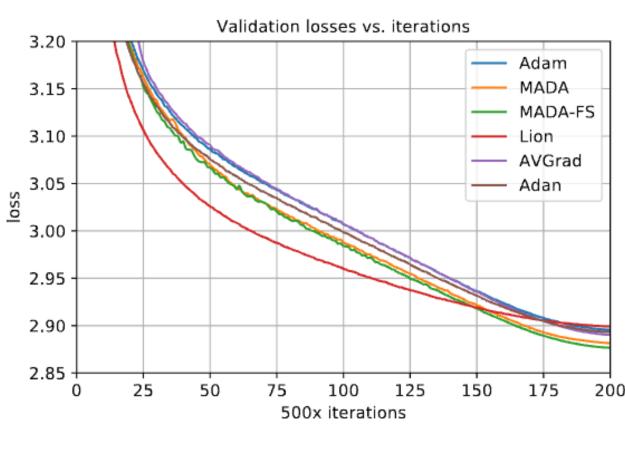
Output: Model wights x_T .


Experiments

- Language Model Experiments: Pre-training GPT-2 (125M) on OpenWebText and a 10M model on Shakespeare, fine-tuning GPT-2 (1.5B) on Shakespeare. Measure perplexity on popular language datasets.
- Vision Experiments: Training ResNet-9 and 5 layer CNN on CIFAR-10.
- **Baselines:** Recently proposed adaptive optimizers, HyperAdam [2] where only β_1, β_2 are learned, SGD with momentum.

Parameterized Optimizer

second-order moment


 $\hat{g}_t = g_t + \beta_3(g_t - g_{t-1})$ $\tilde{g}_t^2 = c_{t-1}\hat{g}_t^2 + (1 - c_{t-1})(\bar{v}_{t-1} + \hat{g}_t^2\operatorname{sign}(\hat{g}_t^2 - \bar{v}_{t-1}))$ $\bar{v}_t = \beta_2 \bar{v}_{t-1} + (1 - \beta_2) \tilde{g}_t^2$ $\tilde{v}_t = (\bar{v}_t + (t-1)\tilde{v}_{t-1})/t$ $v_t = \rho \bar{v}_t + (1 - \rho) \tilde{v}_t$

- \mathcal{O}_q denotes the parameterized optimizer with parameter set q, \mathcal{D} denotes the domain of the parameters.
- At each iteration, we first update the model parameters using the meta-optimizer; and then we update the optimizer parameters through hyper-gradient descent.

Training Curves

training GPT-2 (125M) model

Validation Loss and Perplexity Tables

Validation loss of Monthead of Monthead American Particular Description of Monthead American Monthead American Science (1997) and the Monthead American Science	ADA on OpenWebText vs other s.		ion perplexities o Wikitext and Lam	-	•
Method	Validation Loss	Method	OpenWebText	Wikitext	Lambada
Adam	2.8956	Adam	18.0940	63.8544	77.3314
Adan	2.8896				
HyperAdam	2.8950	Adan	17.9863	63.5518	74.6970
Lion	2.8892	HyperAdam	18.0843	61.7717	72.6803
AVGrad	2.8895	Lion	17.9792	61.8661	75.3158
Avoidu	2.0075	AVGrad	17.9840	64.2620	75.1317
MADA	2.8806	MADA	17.8249	61.2513	74.2480
MADA- FS	2.8766	MADA-FS	17.7544	59.4086	73.5623
Poor initializa	tion				
MADA ⁻	2.8921	Poor initializa			
Adam ⁻	2.9157	MADA ⁻	18.0317	57.1613	75.3550
 		Adam ⁻	18.4624	72.9017	79.1217
Training losses af eare dataset.	fter 2 epochs of fine-tuning on	Table 5 Test acc ResNet models.	uracy of competin	ng methods	for CNN an
 Method	Training loss	Method	5-layer C	NN Re	sNet-9
MADA	0.255	MADA	66.12±0	0.14 93.7	9 ± 0.11
Adam	0.276	Adam	65.84 ± 0	0.11 93.7	3 ± 0.10
TT	0.079	II		0.01 0.00	$0 \perp 0.0c$

daptive optimizer baseline			Wikitext and Lam				
Method	Validation Loss	Method	OpenWebText	Wikitext	Lambada		
Adam	2.8956	Adam	18.0940	63.8544	77.3314		
Adan	2.8896	Adan	17.9863	63.5518	74.6970		
HyperAdam	2.8950	HyperAdam	18.0843	61.7717	72.6803		
Lion	2.8892	Lion	17.9792	61.8661	75.3158		
AVGrad	2.8895	AVGrad	17.9840	64.2620	75.1317		
MADA	2.8806	MADA	17.8249	61.2513	74.2480		
MADA- FS	2.8766	MADA-FS	17.7544	59.4086	73.5623		
Poor initialization							
MADA ⁻	2.8921	Poor initializa		FR 1(10	75 2550		
Adam ⁻	2.9157	MADA ⁻ Adam ⁻	18.0317 18.4624	57.1613 72.9017	75.3550 79.1217		
Fable 4 Training losses at Shakespeare dataset.	fter 2 epochs of fine-tunin	ng on Table 5 Test acc ResNet models.	uracy of competir	ng methods	for CNN ar		
	Training loss	Method	5-layer C	NN Re	sNet-9		
Method	Training loss		$\frac{5-14\text{yer e}}{66.12\pm0}$		9 ± 0.11		
MADA	0.255	MADA					
Adam	0.276	Adam	65.84 ± 0		3 ± 0.10		
HyperAdan	n 0.278	HyperAdam	65.80 ± 0	0.21 93.69	9 ± 0.06		

Robustness

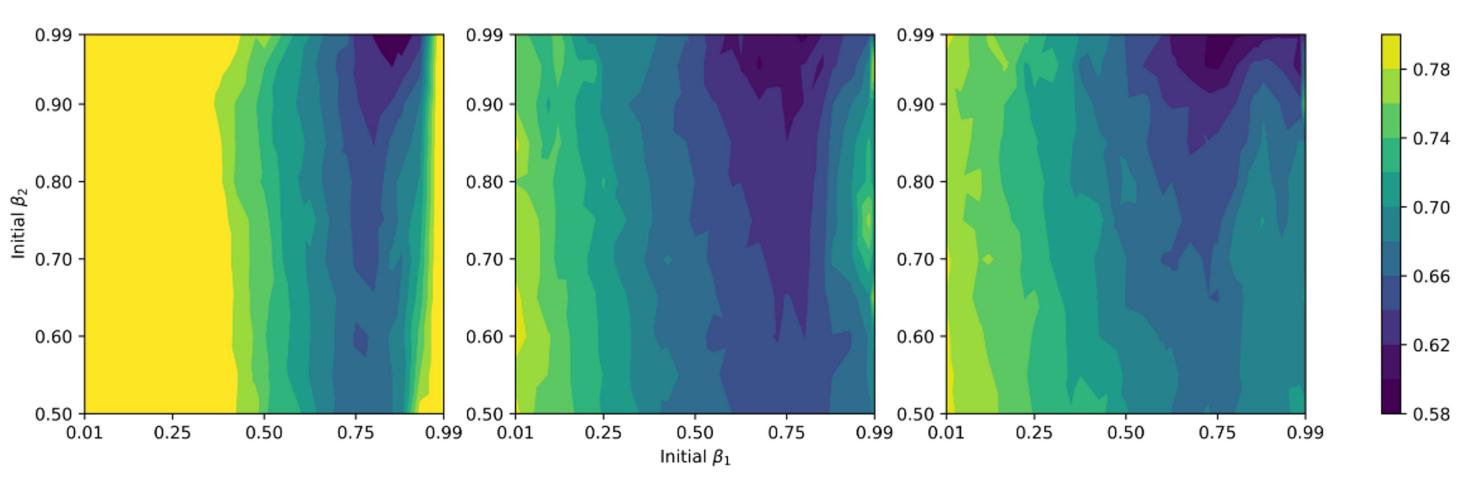
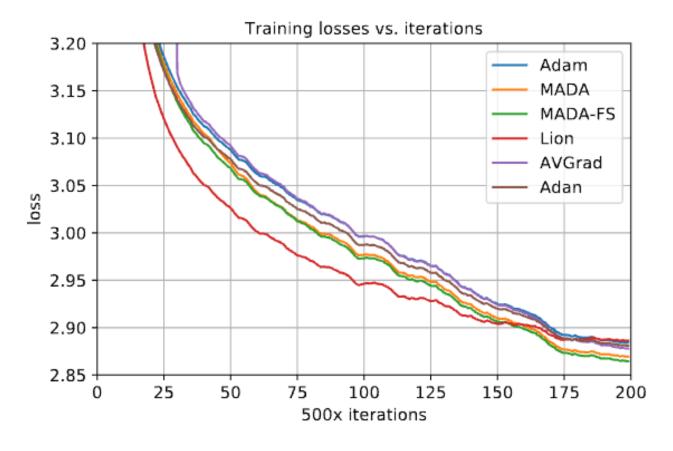



Figure 3 Final training losses of AdamW, MADA, HyperAdam with respect to different initial β_1, β_2 on Shakespeare dataset for training a 10M model. MADA yields lower loss for a wider region illustrating its robustness to initialization.

References

[1] Schmidt, Robin M., Frank Schneider, and Philipp Hennig. "Descending through a crowded valleybenchmarking deep learning optimizers." International Conference on Machine Learning. PMLR, 2021. [2] Chandra, Kartik, et al. "Gradient descent: The ultimate optimizer." Advances in Neural Information Processing Systems 35 (2022)

science

Momentum SGD 65.97 ± 0.94 92.60 ± 0.10

Figure 2 Validation and training losses of competing methods on OpenWebText for

