
TLDR
• We introduce a unified optimizer framework that can generalize several known

optimizers and dynamically learn the most suitable one during training.

• We parameterize the space of optimizers and dynamically search through it using
hyper-gradient descent during training..

• Theoretically, we show that interpolations of optimizers might result in faster
convergence (in constants) compared to individual components.

• Empirically, our method outperforms AdamW and other popular optimizers in many
settings. In particular, MADA outperforms the competing methods in GPT-2 pre-
training/fine-tuning on OpenWebText and Shakespeare datasets, in training ResNet
and CNN architecture on CIFAR-10.

Parameterized Optimizers Training Curves

Motivation for a Unified Optimizer

MADA: Meta-Adaptive Optimizers

References
[1] Schmidt, Robin M., Frank Schneider, and Philipp Hennig. "Descending through a crowded valley-
benchmarking deep learning optimizers." International Conference on Machine Learning. PMLR, 2021.
[2] Chandra, Kartik, et al. "Gradient descent: The ultimate optimizer." Advances in Neural Information
Processing Systems 35 (2022)

MADA: Meta-Adaptive Optimizers through Hyper-gradient
Descent
Kaan Ozkara1, Can Karakus2, Parameswaran Raman2, Mingyi Hong2,3, Shoham Sabach2,4, Branislav Kveton2, Volkan Cevher2,5

1UCLA 2Amazon Web Services 3University of Minnesota 4Technion 5EPFL

ICML 2024

Figure 1 [1]. Different optimizers perform better in different
tasks, Adam remains the most popular especially for LLMs.

Q: Can we find a meta optimizer that automatically chooses what
optimizer to use during training?

A Unified Framework for Adaptive
Optimizers

where 𝛼𝑡 > 0 is learning rate and 𝜖 > 0 is stability constant

Table 1. A unified framework to express adaptive optimizers.

Existing Optimizers
Parameterization

via interpolations
Parameterized Optimizer

first-order moment second-order moment

update term

𝛽1, 𝛽2, 𝛽3, 𝑐, 𝜌, 𝛾 are learnable parameters. Adam: 𝛽3 = 0, 𝑐 = 1, 𝜌 = 1, 𝛾 = 1;	AVGrad:	 𝛽3= 0, 𝑐 = 1, 𝜌 =
0, 𝛾 = 1;	Yogi:	𝛽3= 0, 𝑐 = 0, 𝜌 = 1, 𝛾 = 1;	Lion: 𝛽3 = 0, 𝑐 = 1, 𝜌 = 1, 𝛾 = 0;	Adan: 𝑐 = 1, 𝜌 = 1, 𝛾 = 1.

• 𝒪𝑞 denotes the parameterized
optimizer with parameter set 𝑞, 𝒟
denotes the domain of the
parameters.

• At each iteration, we first update
the model parameters using the
meta-optimizer; and then we
update the optimizer parameters
through hyper-gradient descent.

Access to
paper:

Experiments
• Language Model Experiments: Pre-training GPT-2 (125M) on OpenWebText and a

10M model on Shakespeare, fine-tuning GPT-2 (1.5B) on Shakespeare. Measure
perplexity on popular language datasets.

• Vision Experiments: Training ResNet-9 and 5 layer CNN on CIFAR-10.

• Baselines: Recently proposed adaptive optimizers, HyperAdam [2] where only 𝛽#, 𝛽$
are learned, SGD with momentum.

Figure 2 Validation and training losses of competing methods on OpenWebText for
training GPT-2 (125M) model.

Validation Loss and Perplexity Tables

Robustness

Figure 3 Final training losses of AdamW, MADA, HyperAdam with respect to different
initial 𝜷𝟏, 𝜷𝟐 on Shakespeare dataset for training a 10M model. MADA yields lower
loss for a wider region illustrating its robustness to initialization.

Interpolated optimizers can have faster convergence than individual components:

