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Background

Membership Inference Attack

• The goal of membership inference attack(MIA) is to identify
whether a data point was in a model’s training set.
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Background

Attack Advantage

• An attacker infers an input record x as a member if its
prediction loss is smaller than a threshold τ .

Aloss = I(L(hS(x), y) ⩽ τ)

Evaluation Metric

To quantify the performance of the attack model A, we use the
membership advantage

Adv =Pr(A = 1|m = 1)− Pr(A = 1|m = 0)
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Motivation

Membership Advantage by Metric-based Attack

Suppose ϵ is a random variable denoting loss, such that
ϵ ∼ N(µS , σ

2
S) when m = 1 and ϵ ∼ N(µD, σ

2
D) when m = 0.

Then the membership advantage of Aloss is:

Adv =Pr(A = 1|m = 1)− Pr(A = 1|m = 0)

=Pr(ϵ ⩽ τ |m = 1)− Pr(ϵ ⩽ τ |m = 0)

=Φ(
τ − µS

σS
)− Φ(

τ − µD

σD
)

where Φ(·) is the cumulative distribution function of standard
normal distribution.
Assume τ is chosen such that Φ( τ−µD

σD
) = α,

Adv = Φ{Φ
−1(α)σD + µD − µS

σS
} − α
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Motivation

Prior SOTA Defend Method - RelaxLoss [Chen et al. 2022]

• Perform gradient ascent to promote a high variance of the
training loss distribution.

Achieve Success in Privacy Defense, but...

• Optimizing toward a reverse direction leads to suboptimal
performance.

Can we achieve a comparable defense effect using gradient
descent?
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Setup

• We study the problem of membership inference attacks in
K-class classification tasks.

• For a sample x ∈ X , we denote the distribution over different
labels by q(k|x), the output probability of hS(x) by p(k|x).

• In particular, the confidence in the true label p(y|x) is
abbreviated as py.

• The most commonly used Cross Entropy loss function:
ℓce = − log py
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Why Might CE Reduce the Variance of Training Loss?

Assume that py is a random variable with mean 1− ϵ and variance
σ2, where ϵ > 0
For cross entropy loss ℓce, by taylor expansion, we have

Eℓce = E(− log py) > E[(1− py) +
1

2
(1− py)

2] = ϵ+
1

2
(σ2 + ϵ2)

Training loss can be optimized toward a smaller value of variance
σ2

Alternatively, we could interpret σ2 as a penalty term.
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Convex function decreases the loss variance

Given a twice continuously differentiable function ℓ ∈ C2(0, 1] such
that ℓ(1) = 0 and ℓ′(x) < 0, ∀x ∈ (0, 1]. If ℓ is strictly convex,
then

ED[ℓ(py)] ⩾ Aϵ+
B

2
(ϵ2 + σ2)

where A = −ℓ′(1) > 0, B ⩾ 0 is a non-negative lower bound of
ℓ′′(x).
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Empirical Validation – Focal Loss

Focal Loss

ℓfl = −(1− py)
γ log(1− py)

ℓ′′fl ⩾ ℓ′′ce,∀x ∈ (0, 1]
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Figure 1: Models are trained on CIFAR-10 with Resnet-34 using Cross-entropy loss (CE) and Foc al loss (FL).
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Can concave functions increase the loss variance?

Given a twice continuously differentiable function ℓ ∈ C2[0, 1] such
that ℓ(1) = 0 and ℓ′(x) < 0, ∀x ∈ [0, 1]. If ℓ is strictly concave,
there must exist a negative constant B ⩽ 0 such that

ED[ℓ(py)] = Aϵ+B(σ2 + ϵ2) (1)

where A = −ℓ′(1) > 0.
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Our Proposed Method

Add concave term

Since concave functions can be leveraged to design loss functions,
we propose to add a concave term into the original loss function
(e.g., cross-entropy loss), which is called Convex-Concave Loss
(CCL).
We define a concave function set as:

F = {f ∈ C2[0, 1] | f ′(x) < 0, f ′′(x) < 0,∀x ∈ [0, 1]}

Convex-Concave Loss

ℓccl = αℓ̂+ (1− α)ℓ̃

where ℓ̂ is the origin convex function, ℓ̃ ∈ F is a concave term
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Our Proposed Method

Concave Exponential Loss (CEL) and Concave Quadratic Loss
(CQL)

ℓ̃exp = − exp(py), ℓ̃qua = −py −
1

2
p2y
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Figure 2: ℓ with different parameters α
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Compare with RelaxLoss

RelaxLoss:

Var(ℓ+∆ℓ) = Var(ℓ) + Var(∆ℓ) + 2Cov(ℓ,∆ℓ)

With the convex function, the larger the loss value is, the faster it
changes.

Cov(ℓ,∆ℓ) > 0

ConcaveLoss:

Var(ℓ−∆ℓ) = Var(ℓ) + Var(∆ℓ)− 2Cov(ℓ,∆ℓ)

As for the concave terms, Cov(ℓ,∆ℓ) < 0
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Experimental Results
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Figure 3: CIFAR10 Resnet34
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Experimental Results

42 45 48 51

Test Accuracy

15

30

45

60

75

90

A
tta

ck
 A

dv
an

ta
ge

NN

42 45 48 51

Test Accuracy

30

45

60

75

90

A
tta

ck
 A

dv
an

ta
ge

Loss

42 45 48 51

Test Accuracy

15

30

45

60

75

90

A
tta

ck
 A

dv
an

ta
ge

Entropy

42 45 48 51

Test Accuracy

30

45

60

75

90

A
tta

ck
 A

dv
an

ta
ge

M-Entropy

42 45 48 51

Test Accuracy

15

30

45

60

75

90

A
tta

ck
 A

dv
an

ta
ge

Confidence

42 44 46 48 50

Test Accuracy

30

40

50

60

A
tta

ck
 A

dv
an

ta
ge

Correct

42 44 46 48 50

Test Accuracy

30

40

50

60

70

A
tta

ck
 A

dv
an

ta
ge

Rotation

42 44 46 48 50

Test Accuracy

40

50

60

70

A
tta

ck
 A

dv
an

ta
ge

Translation

CCQL (Ours) CCEL (Ours) Label Smothing AdvReg RelaxLoss MixupMMD Confidence Penalty Dropout EarlyStopping without defense

Figure 4: CIFAR100 Desnet121
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Conclusion

• Analysis: We provide rigorous theoretical analyses to
establish a key insight: convex loss functions tend to decrease
the loss variance

• Method: We introduce the concept of Convex-Concave Loss
(CCL), a generalized loss function that incorporates a concave
term into the original convex loss, i.e., Cross-Entropy (CE)
loss.

• Results: We establish that CCL offers a state-of-the-art
balance in the privacy-utility trade-off, with extensive
experiments

Zhenlong Liu, Lei Feng, Huiping Zhuang, Xiaofeng Cao, Hongxin Wei 16 / 17



Thanks!


