Mitigating Privacy Risk in Membership Inference by Convex-Concave Loss

Zhenlong Liu, Lei Feng, Huiping Zhuang, Xiaofeng Cao, Hongxin Wei

ICML 2024

Zhenlong Liu, Lei Feng, Huiping Zhuang, Xiaofeng Cao, Hongxin Wei 1 / 17

Membership Inference Attack

• The goal of membership inference attack(MIA) is to identify whether a data point was in a model's training set.

Zhenlong Liu, Lei Feng, Huiping Zhuang, Xiaofeng Cao, Hongxin Wei 2 / 17

Attack Advantage

• An attacker infers an input record x as a member if its prediction loss is smaller than a threshold τ .

$$
\mathcal{A}_{\rm loss} = \mathbb{I}(\mathcal{L}(h_S(\boldsymbol{x}), y) \leqslant \tau)
$$

Evaluation Metric

To quantify the performance of the attack model \mathcal{A} , we use the membership advantage

$$
Adv = \Pr(\mathcal{A} = 1 | m = 1) - \Pr(\mathcal{A} = 1 | m = 0)
$$

Membership Advantage by Metric-based Attack

Suppose ϵ is a random variable denoting loss, such that $\epsilon \sim N(\mu_S, \sigma_S^2)$ when $m=1$ and $\epsilon \sim N(\mu_D, \sigma_D^2)$ when $m=0.$ Then the membership advantage of A_{loss} is:

$$
Adv = \Pr(A = 1|m = 1) - \Pr(A = 1|m = 0)
$$

$$
= \Pr(\epsilon \leq \tau | m = 1) - \Pr(\epsilon \leq \tau | m = 0)
$$

$$
= \Phi(\frac{\tau - \mu_S}{\sigma_S}) - \Phi(\frac{\tau - \mu_D}{\sigma_D})
$$

where $\Phi(\cdot)$ is the cumulative distribution function of standard normal distribution.

Assume τ is chosen such that $\Phi(\frac{\tau-\mu_D}{\sigma_D})=\alpha$,

$$
Adv = \Phi \{ \frac{\Phi^{-1}(\alpha)\sigma_D + \mu_D - \mu_S}{\sigma_S} \} - \alpha
$$

Zhenlong Liu, Lei Feng, Huiping Zhuang, Xiaofeng Cao, Hongxin Wei

Prior SOTA Defend Method - RelaxLoss [Chen et al. 2022]

• Perform gradient ascent to promote a high variance of the training loss distribution.

Achieve Success in Privacy Defense, but...

• Optimizing toward a reverse direction leads to suboptimal performance.

Can we achieve a comparable defense effect using gradient descent?

- We study the problem of membership inference attacks in K-class classification tasks.
- For a sample $x \in \mathcal{X}$, we denote the distribution over different labels by $q(k|x)$, the output probability of $h_S(x)$ by $p(k|x)$.
- In particular, the confidence in the true label $p(y|x)$ is abbreviated as p_y .
- The most commonly used Cross Entropy loss function: $\ell_{ce} = -\log p_u$

Assume that p_y is a random variable with mean $1 - \epsilon$ and variance σ^2 , where $\epsilon > 0$ For cross entropy loss ℓ_{ce} , by taylor expansion, we have

$$
E\ell_{ce} = E(-\log p_y) > E[(1 - p_y) + \frac{1}{2}(1 - p_y)^2] = \epsilon + \frac{1}{2}(\sigma^2 + \epsilon^2)
$$

Training loss can be optimized toward a smaller value of variance σ^2

Alternatively, we could interpret σ^2 as a penalty term.

Given a twice continuously differentiable function $\ell \in C^2(0,1]$ such that $\ell(1) = 0$ and $\ell'(x) < 0, \forall x \in (0,1]$. If ℓ is strictly convex, then

$$
\mathbb{E}_{\mathcal{D}}[\ell(p_y)] \geqslant A\epsilon + \frac{B}{2}(\epsilon^2 + \sigma^2)
$$

where $A = -\ell'(1) > 0$, $B \geqslant 0$ is a non-negative lower bound of $\ell''(x)$.

Empirical Validation – Focal Loss

Focal Loss

$$
\ell_{\rm fl} = -(1 - p_y)^{\gamma} \log(1 - p_y)
$$

$$
\ell_{\rm fl}^{\prime\prime} \ge \ell_{\rm ce}^{\prime\prime}, \forall x \in (0, 1]
$$

Figure 1: Models are trained on CIFAR-10 with Resnet-34 using Cross-entropy loss (CE) and Foc al loss (FL).

Zhenlong Liu, Lei Feng, Huiping Zhuang, Xiaofeng Cao, Hongxin Wei 9 / 17

E

イロン イ何 メイヨン イヨン

Given a twice continuously differentiable function $\ell \in C^2[0,1]$ such that $\ell(1) = 0$ and $\ell'(x) < 0, \forall x \in [0, 1]$. If ℓ is strictly concave, there must exist a **negative** constant $B \le 0$ such that

$$
\mathbb{E}_{\mathcal{D}}[\ell(p_y)] = A\epsilon + B(\sigma^2 + \epsilon^2)
$$
 (1)

where $A = -\ell'(1) > 0$.

Add concave term

Since concave functions can be leveraged to design loss functions, we propose to add a concave term into the original loss function (e.g., cross-entropy loss), which is called Convex-Concave Loss (CCL).

We define a concave function set as:

$$
\mathcal{F} = \{ f \in C^2[0,1] \mid f'(x) < 0, f''(x) < 0, \forall x \in [0,1] \}
$$

Convex-Concave Loss

$$
\ell_{\rm ecl} = \alpha \hat{\ell} + (1 - \alpha) \tilde{\ell}
$$

where $\hat{\ell}$ is the origin convex function, $\tilde{\ell} \in \mathcal{F}$ is a concave term

Our Proposed Method

Concave Exponential Loss (CEL) and Concave Quadratic Loss (CQL)

$$
\tilde{\ell}_{\exp} = -\exp(p_y), \quad \tilde{\ell}_{\text{qua}} = -p_y - \frac{1}{2}p_y^2
$$

Figure 2: ℓ with different para[met](#page-10-0)e[rs](#page-12-0) α

Zhenlong Liu, Lei Feng, Huiping Zhuang, Xiaofeng Cao, Hongxin Wei 12 / 17

RelaxLoss:

$$
Var(\ell + \Delta \ell) = Var(\ell) + Var(\Delta \ell) + 2Cov(\ell, \Delta \ell)
$$

With the convex function, the larger the loss value is, the faster it changes.

$$
Cov(\ell, \Delta \ell) > 0
$$

Concavel oss:

$$
Var(\ell - \Delta \ell) = Var(\ell) + Var(\Delta \ell) - 2Cov(\ell, \Delta \ell)
$$

As for the concave terms, $Cov(\ell, \Delta \ell) < 0$

Figure 3: CIFAR10 Resnet34

目

イロト イ部 トイモト イモト

Figure 4: CIFAR100 Desnet121

目

イロト イ部 トイモト イモト

- **Analysis**: We provide rigorous theoretical analyses to establish a key insight: convex loss functions tend to decrease the loss variance
- Method: We introduce the concept of Convex-Concave Loss (CCL), a generalized loss function that incorporates a concave term into the original convex loss, i.e., Cross-Entropy (CE) loss.
- **Results**: We establish that CCL offers a state-of-the-art balance in the privacy-utility trade-off, with extensive experiments

Thanks!

K ロ > K 레 > K 코 > K 코 > 트 코 → 9 Q Q*