Bayesian model selection allows for

flexible discovery of **bivariate causal**

relations

Bivariate Causal Discovery using Bayesian Model Selection

Anish Dhir (Imperial College London), Sam Power (Univ. of Bristol), Mark van der Wilk (Univ. of Oxford)

Problem: $P(Y|X)P(X) = P(X|Y)P(Y)$. Maximising likelihood cannot identify the causal direction.

 $\max_{\theta, \phi} \ p(\mathcal{D} | \theta, \phi, \mathcal{M}_{X \to Y})$ $\max_{\theta, \phi} p(\mathcal{D}|\theta, \phi, \mathcal{M}_{Y \to X})$ **Marginal likelihood** $p(x, y | \mathcal{M}_{X\rightarrow Y})$:

Introduction

 y \pmb{x} \boldsymbol{x}

Given variables can we find the causal direction?

Z $p(y|x, \theta)p(\theta)d\theta$ \mathbb{Z} $p(x|\phi)p(\phi)d\phi$

Previous solutions: Restrict model class to allow maximum likelihood to identify, but restricts the datasets you can model!

Idea: Use Bayesian Model selection Each causal direction is a separate model

 $p(\mathcal{M}_{X\rightarrow Y} | \mathcal{D}) = \frac{p(\mathcal{D} | \mathcal{M}_{X\rightarrow Y})p(\mathcal{M}_{X\rightarrow Y})}{p(\mathcal{D})}$ $p(\mathcal{D})$ $p(\mathcal{D}|\mathcal{M}_{X\rightarrow Y})$ is the **Marginal Likelihood**

• Total variation of 1 corresponds to completely identifiable case

• Terms in the causal factorisation are parametrised independently.

• Parameters are independent $\theta \perp \!\!\! \perp \phi$

• Assumptions $p(\theta)p(\phi)$ are required

Assumptions:

 $\mathcal D$

•Assumptions can reconstruct previous known identifiability with maximum likelihood.

•Can also identify in the case of **flexible** models, where maximum likelihood cannot.

• Marginal likelihood must sum to 1 over datasets. This **restricts** how well our model can explain all datasets.

Correctness:

•Can quantify probability of finding the correct model

$$
P(E) = \frac{1}{2}(1 - \underbrace{\text{TV}[P_{\mathcal{D}}(\cdot | \mathcal{M}_{X \to Y}), P_{\mathcal{D}}(\cdot | \mathcal{M}_{Y \to X})]}_{\text{Total variation between model densities}})
$$

• Under model misspecification our method is not

brittle

$$
|\n\prod(\text{Error}) - P(\text{Error})| \le
$$
\nTrue probability of error

\nModel probability of error

\n
$$
\text{TV}[\Pi_{\mathcal{D}}(\cdot | X \to Y), P_{\mathcal{D}}(\cdot | \mathcal{M}_{X \to Y})]
$$

GPLVMs

We want to use a **flexible** Bayesian model with

the ability to model:

• Non Gaussian likelihoods

• Heteroscedastic noise

We use **Gaussian Process Latent variable models**

 $f(\cdot, \cdot) \sim \mathcal{N}(0, K_{\rho}(\mathbf{x}, \mathbf{w}))$ $p(\mathbf{y}|\mathbf{x},\mathbf{f}) =$ Z $\mathcal{N}(\textbf{f}(\textbf{x}, \textbf{w}), \sigma^{2})p(\textbf{w})d\textbf{w}$

Results

Flexibility of our method allows for good performance across a wide range of data generating assumptions (Metric: AUPRC, higher is better)

CDCI 72.2 96.0 94.3 **91.8** 58.7

GPLVM 81.9 97.7 98.9 89.3 **78.3**

@dhir_anish @markvanderwilk

Imperial College London