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Background: Neural image compression

Goal. Achieves higher pixel-level and perceptual fidelity both
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Background: Neural image compression

Goal. Achieves higher pixel-level and perceptual fidelity both

Original (kodim04.png) [1] LIC-TCM (bpp: 0.12) [2] MS-ILLM (bpp: 0.13)

[1] Liu et al., “Learned Image Compression with Mixed Transformer-CNN Architectures,” CVPR 2023.
[2] Muckley et al., “Improving Statistical Fidelity for Neural Image Compression with Implicit Local Likelihood Models,” ICML 2023.



Motivation

Recent compression works ([1], [2]) improve perceptual quality

by using text-guided generation model. (e.g. Diffusion model)
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[1] Careil et al., “Towards image compression with perfect realism at ultralow bitrates,” ICLR 2024.

[2] Lei et al., “Text + Sketch: Image Compression at Ultra Low Rates,” arXiv 2023.



Motivation

They utilize text using in decoding phase of image compression.
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Motivation

Limitations of text-guided decoding are inconsistency and low pixel-fidelity.

"Two parrots standing next to each other with leaves in the background".

Reconstructions by Diffusion-based approach

Original (PerCo)



Motivation

Limitations of text-guided decoding are inconsistency and low pixel-fidelity.

Reconstructions by Diffusion-based approaches
(Text+Sketch, PerCo)

Original



Motivation

Limitations of text-guided decoding are inconsistency and low pixel-fidelity.
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Text-guided decoding may not be effective
for PSNR and consistency.



Motivation

Propose a text-guided method for achieving high pixel and perceptual fidelity.
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Text Adaptive COmpression

- TACO 4



Text Adaptive Compression

Idea. Using text when encoding the image.

C =

Text Encoder

v

X =

Encoder

>

Decoder

> X

* ¢ means text caption, x means target (original) image, £ means reconstructed (compressed) image.

Overall framework



Text Adaptive Compression

Idea. Using text when encoding the image.

e Inspired by how humans perceive images using language.

“tri-colored fluffy

pomeranian dog” . Text Adapter
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Text Adaptive Compression

Idea. Using text when encoding the image.

e Inspired by how humans perceive images using language.
o Encoded image feature contains additional semantic information.

“tri-colored fluffy

pomeranian dog” . Text Adapter
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Text Adaptive Compression

Idea. Using text when encoding the image.
e During the decoding, only the image latent feature is processed.

— Reduce the pixel-level distortion

— Improve the pixel fidelity
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Text Adaptive Compression

TACO transforms a popular PSNR-oriented neural codec architecture
into a text-guided one by augmenting the encoder with a text adapter.
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Text Adapter

Bi-directional attention injects textual information into the latent code.
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Text Adapter

Text embeddings are generated from (pre-trained) CLIP.

“tri-colored fluffy _, CLIP -
pomeranian dog” Encoder

Text embeddings



Text Adapter

Inject text information to image latent via cross-attention.
(CA computes query from image latent and key, values from text embeddings.)
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Text Adapter

Extract compressed image feature and incorporate with text using cross-attention.
(CA computes queries from the text and keys/values from the image.)
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Text Adapter

Injecting the text embeddings into an image latent via cross-attention.
(Textual information is updated by image latent & image latent is down-sampled.)
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Text Adapter

Finally, the encoder generates a joint image-text latent feature (y).
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Joint image-text loss

Train the model to compress the image better by leveraging text information.
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Joint image-text loss

Reduce the semantic distances by penalizing two terms:

1. Originalimage & Compressed image
2. Compressed image & Text description

¥ Semantic Distance is measured in the joint embedding space of CLIP.

Joint embedding space

¢ means text caption, x means target (original) image, £ means reconstructed (compressed) image.



Joint image-text loss

Reduce the semantic distances by penalizing two terms:

1. Originalimage & Compressed image
2. Compressed image & Text description

¥ Semantic Distance is measured in the joint embedding space of CLIP.

Li(x,%,¢) = Leon(i(®), fr(©)) + B - 1fi(x) = iR

¢ means text caption, x means target (original) image, £ means reconstructed (compressed) image.

L..,, means contrastive loss used in CLIP.



Experimental Setup

Train Dataset. MS-COCO Train Set

e C(Contains 82,783 images with 5 human-annotated captions for each image

a cat drinking out of a glass on top of a table.

a cat is drinking something from a glass.

a cat stands on a table drinking water out of a glass

a grey colored cat that is drinking from a glass of water.
a cat drinkina ice water out of a alass.

Example of train data



Experimental Setup

To compare with other neural image codecs, we set up the following settings:

e Baselines
o PSNR-focused. LIC-TCM (CVPR’ 23), ELIC(CVPR’ 22)
o Perceptual-focused. PerCo (ICLR’ 24), MS-ILLM (ICML’ 23), HiFiC (NeurIPS’ 20)

e Metrics

o PSNR
o LPIPS
o FID

e Evaluation Datasets

o MS-COCO 30K (Human-annotated caption)
o CLIC (Machine-generated caption)
|



Result: Overview

TACO achieves both high pixel-level and perceptual quality.
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Result: vs. Image Compression Codecs

On all tested datasets (MS-COCO 30K, CLIC), TACO is...

e Perceptual-fidelity (LPIPS). Outperforms all baselines!
e Pixel-fidelity (PSNR). Competitive with PSNR-focused, beats Perceptual-focused



—&— TACO (Ours)

—&— PerCo MS-ILLM HiFiC —@— LIC-TCM —@— ELIC = BPG == VTM
LPIPS | PSNR 1
0.16
14
0.14
1 12
0.12— =l
1 10—+
0.10 1
i o]
0.08- ]
0.06 | &
0.04 4
0.02— 2—
] J 4 < >
0 T T i T " 1 | " I 0 T " T T T I
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
Bits per pixel Bits per pixel Bits per pixel
MS-COCO 30k (using Human-generated caption)
LPIPS | PSNR T FID {
0.20 < 38
i N J
0.18 37
0.16] 36
0.14] 35
0.12; 34;
0.104 33
0.08 32
0,06; 31}
004 30
012;\%: < & 5% 20
el - P S -+ ™
0 e o o e 28t R e B e e e 04— e e e I B T o B
0.10 0.15 0.20 0.25 0.30 035 0.10 0.15 0.20 0.25 0.30 0.35 0.10 0.15 0.20 0.25 0.30 035
Bits per pixel Bits per pixel Bits per pixel

CLIC (using Machine-generated caption)



Result: vs. Image Compression Codecs

TACO achieves much better than the previous text-guided decoding baseline.

e Prevent the degradations in PSNR
e Achieve better LPIPS and FID
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[1] Jiang et al., “Multi-Modality Deep Network for Extreme Learned Image Compression,” AAAL 2023.

[2] Qin et al., “Perceptual image compression with cooperative cross-modal side information,” arXiv 2023.



Qualitative results

TACO improves reconstruction significantly by focusing on captions.

“A large body of water with

palm trees |on an island”

MS-ILLM LIC-TCM



Ablation Studies

Without a text adapter, perceptual fidelity (LPIPS) is substantially degraded.
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Ablation Studies

Without joint image text loss, perceptual fidelity (LPIPS) severely degrades.
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Contribution

e Propose the first text-for-encoding-only framework

e Achieve high pixel-level fidelity as well as high perceptual quality

e Show the importance of using text to focus on perceptually relevant
information in images



