
• Individuals and cells are heterogeneous 

• Complexity is an intrinsic property of many diseases  

• Dataset size is growing and current methods are not scalable 

 need for scalable estimation of non-linear mixed effect models→

Overview
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• Non-linear mixed-effects models are a powerful tool for studying 

heterogeneous populations in various fields, including biology, 

medicine, economics, and engineering 

• The aim is to find a distribution over the parameters that describe the 

whole population using a model that can generate simulations for an 

individual of that population.  

• Fitting these distributions to data is computationally challenging if the 

description of individuals is complex and the population is large.  

• We propose a novel machine learning-based approach: We exploit 

neural density estimation based on conditional normalizing flows to 

approximate individual-specific posterior distributions in an 

amortized fashion, thereby allowing for efficient inference of 

population parameters.  

• Applying this approach to problems from cell biology and 

pharmacology, we demonstrate its unseen flexibility and scalability to 

large data sets compared to established methods.
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• The generative model  can generate simulations for a given set of 

parameters  and time points. As a generative model, we 

understand any parametric model, such as linear models, the solution 

of (stochastic) differential equations, or Markov jump processes, 

which can produce simulations for an individual given some 

parameters . 

• A non-linear mixed-effects (NLME) model describes observations of 

the entire population using the generative model  and individual-

specific parameters . Individual parameters, which need to 

be marginalized out, come from a population model parameterized 

by population parameters , i.e., . 

• Conditional normalizing flows can transform a complicated 

conditional density, such as a posterior probability, into a simpler 

density from which we know how to sample.
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The amortized approach is more scalable than state of the art methods, 
it is flexible w.r.t. the population and the individual model, it facilitates 
Bayesian inference, uncertainty analysis and the use of more complex 
models. 

Cons 
• Training the neural posterior estimator is simulation hungry. Hence, 

method more relevant for large data sets or when the likelihood for 
the generative model is not available. 

Pros 
• You can use any generative model for the individual (as long we can 

perform simulations). 
• You can include missing data, censoring directly in the generative 

model. 
• You can estimate point estimates of the population parameters or 

perform a full Bayesian analysis. 
• No assumptions of the population model are needed to train the 

neural posterior estimator. Hence, the population model can be 
changed at any time without requiring retraining. 

• Sampling from the neural posterior estimator is fast, therefore, 
inference time of the population parameters scales almost constant 
with respect to the number of individuals in a population.

Abstract

Our approach employs amortizing inference, based on invertible neural networks, to sample from the individual-
specific posterior distribution, which is then used to infer the population-level parameters. After training, we 
amortize the cost of training by repeatedly applying the trained neural networks (potentially from different data 
sets) for inference.
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Example problems  
Single-cell models describing translation kinetics after transfection with mRNA (model from Fröhlich et. al. (2018)).  

A Schematic representation of GFP translation after mRNA transfection in a single cell. 
B Visualization of the simple and detailed single-cell ODE models (color indicates the states included in model). 
C Fluorescence intensity time courses of 200 single cells out of 5488. 

We show that we get fits on single cell level and population level at least as good as the state of the art method 
(SAEM - Kuhn, E. and Lavielle, M. (2005)).

D Credible regions of trajectories estimated by the neural posterior estimator for two real cells. 
E Median of the mean squared error (MSE) of the estimated compared to the true parameters of the synthetic data 
for both single-cell NLME models is shown for different numbers of cells. 
F The difference in the population mean estimated from real trajectories and simulations generated with the 
estimated population parameters is shown. 

Our approach is more scalable and flexible in terms of choosing the population model (e.g. including correlations) 
and can work with arbitrary generative models (e.g. ODEs or SDEs, only simulation based). Furthermore, no 
retraining is required to include changes or an entire new population model.
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